Abstract A toy model for the deep ocean overturning circulation in multiple basins is presented and applied to study the role of buoyancy forcing and basin geometry in the ocean’s global overturning. The model reproduces the results from idealized general circulation model simulations and provides theoretical insights into the mechanisms that govern the structure of the overturning circulation. The results highlight the importance of the diabatic component of the meridional overturning circulation (MOC) for the depth of North Atlantic Deep Water (NADW) and for the interbasin exchange of deep ocean water masses. This diabatic component, which extends the upper cell in the Atlantic below the depth of adiabatic upwelling in the Southern Ocean, is shown to be sensitive to the global area-integrated diapycnal mixing rate and the density contrast between NADW and Antarctic Bottom Water (AABW). The model also shows that the zonally averaged global overturning circulation is to zeroth-order independent of whether the ocean consists of one or multiple connected basins, but depends on the total length of the southern reentrant channel region (representing the Southern Ocean) and the global ocean area integrated diapycnal mixing. Common biases in single-basin simulations can thus be understood as a direct result of the reduced domain size.
more »
« less
Distinct Controls on the Strength of the Abyssal Overturning Circulation: Channel versus Basin Dynamics
Abstract Although the reconfiguration of the abyssal overturning circulation has been argued to be a salient feature of Earth’s past climate changes, our understanding of the physical mechanisms controlling its strength remains limited. In particular, existing scaling theories disagree on the relative importance of the dynamics in the Southern Ocean versus the dynamics in the basins to the north. In this study, we systematically investigate these theories and compare them with a set of numerical simulations generated from an ocean general circulation model with idealized geometry, designed to capture only the basic ingredients considered by the theories. It is shown that the disagreement between existing theories can be partially explained by the fact that the overturning strengths measured in the channel and in the basin scale distinctly with the external parameters, including surface buoyancy loss, diapycnal diffusivity, wind stress, and eddy diffusivity. The overturning in the reentrant channel, which represents the Southern Ocean, is found to be sensitive to all these parameters, in addition to a strong dependence on bottom topography. By contrast, the basin overturning varies with the integrated surface buoyancy loss rate and diapycnal diffusivity but is mostly unaffected by winds and channel topography. The simulated parameter dependence of the basin overturning can be described by a scaling theory that is based only on basin dynamics.
more »
« less
- Award ID(s):
- 1846821
- PAR ID:
- 10253220
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 51
- Issue:
- 7
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 2073 to 2086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract It remains uncertain how the Southern Ocean circulation responds to changes in surface wind stress, and whether coarse-resolution simulations, where mesoscale eddy fluxes are parameterized, can adequately capture the response. We address this problem using two idealized model setups mimicking the Southern Ocean: a flat-bottom channel and a channel with moderately complex topography. Under each topographic configuration and varying wind stress, we compare several coarse-resolution simulations, configured with different eddy parameterizations, against an eddy-resolving simulation. We find that 1) without topography, sensitivity of the Antarctic Circumpolar Current (ACC) to wind stress is overestimated by coarse-resolution simulations, due to an underestimate of the sensitivity of the eddy diffusivity; 2) in the presence of topography, stationary eddies dominate over transient eddies in counteracting the direct response of the ACC and overturning circulation to wind stress changes; and 3) coarse-resolution simulations with parameterized eddies capture this counteracting effect reasonably well, largely due to their ability to resolve stationary eddies. Our results highlight the importance of topography in modulating the response of the Southern Ocean circulation to changes in surface wind stress. The interaction between mesoscale eddies and stationary meanders induced by topography requires more attention in future development and testing of eddy parameterizations.more » « less
-
Abstract The age of seawater refers to the amount of time that has elapsed since that water encountered the surface. This age measures the ventilation rate of the ocean, and the spatial distribution of age can be influenced by multiple processes, such as overturning circulation, ocean mixing, and air–sea exchange. In this work, we aim to gain new quantitative insights about how the ocean’s age tracer distribution reflects the strength of the meridional overturning circulation and diapycnal diffusivity. We propose an integral constraint that relates the age tracer flow across an isopycnal surface to the geometry of the surface. With the integral constraint, a relationship between the globally averaged effective diapycnal diffusivity and the meridional overturning strength at an arbitrary density level can be inferred from the age tracer concentration near that level. The theory is tested in a set of idealized single-basin simulations. A key insight from this study is that the age difference between regions of upwelling and downwelling, rather than any single absolute age value, is the best indicator of overturning strength. The framework has also been adapted to estimate the strength of abyssal overturning circulation in the modern North Pacific, and we demonstrate that the age field provides an estimate of the circulation strength consistent with previous studies. This framework could potentially constrain ocean circulation and mixing rates from age-like realistic tracers (e.g., radiocarbon) in both past and present climates. Significance StatementThe age of seawater—the local mean time since local water from different pathways was last at the surface—is a valuable indicator of ocean circulation and the transport time scale of heat and carbon. We introduce a novel constraint that relates total age flow across a density surface to its geometry, which provides new insights into constraining ocean circulation and mixing rates from age-like realistic tracers (e.g., radiocarbon).more » « less
-
Abstract Diapycnal upwelling along sloping topography has been shown to be an important component of the abyssal overturning circulation. Theoretical studies of mixing-driven upwelling have mostly relied on a time-averaged description of mixing acting on a mean stratification which ignores the intermittency of mixing. Typically, these studies prescribed a time-invariant turbulent diffusivity profile motivated by scenarios where tidal currents encounter gentle topography with small-scale corrugations, leading to subsequent propagation and breaking of internal waves. Here, a different scenario is considered where a tidal current interacts with smooth but steep topography, a case often encountered near continental margins and troughs. The performed nonhydrostatic simulations resolve both the strong oscillatory shear that develops along the steep critical topography and the associated mixing events. Strong diapycnal mixing is observed during the upslope phase of the tidal flow when both the near-boundary stratification and shear are enhanced. During the downslope phase, strong overturning events do develop, but they are associated with weak stratification and less efficient diapycnal mixing. These results highlight that the temporal evolution of both shear and stratification play a key role in setting when diapycnal mixing and water mass transformation occur along steep topography. In contrast, over gentle topography, tidal shears do not become sufficiently large to generate strong local mixing for typical oceanographic parameters.more » « less
-
Abstract Small-scale mixing drives the diabatic upwelling that closes the abyssal ocean overturning circulation. Indirect microstructure measurements of in-situ turbulence suggest that mixing is bottom-enhanced over rough topography, implying downwelling in the interior and stronger upwelling in a sloping bottom boundary layer. Tracer Release Experiments (TREs), in which inert tracers are purposefully released and their dispersion is surveyed over time, have been used to independently infer turbulent diffusivities—but typically provide estimates in excess of microstructure ones. In an attempt to reconcile these differences, Ruan and Ferrari (2021) derived exact tracer-weighted buoyancy moment diagnostics, which we here apply to quasi-realistic simulations. A tracer’s diapycnal displacement rate is exactly twice the tracer-averaged buoyancy velocity, itself a convolution of an asymmetric upwelling/downwelling dipole. The tracer’s diapycnal spreading rate, however, involves both the expected positive contribution from the tracer-averaged in-situ diffusion as well as an additional non-linear diapycnal distortion term, which is caused by correlations between buoyancy and the buoyancy velocity, and can be of either sign. Distortion is generally positive (stretching) due to bottom-enhanced mixing in the stratified interior but negative (contraction) near the bottom. Our simulations suggest that these two effects coincidentally cancel for the Brazil Basin Tracer Release Experiment, resulting in negligible net distortion. By contrast, near-bottom tracers experience leading-order distortion that varies in time. Errors in tracer moments due to realistically sparse sampling are generally small (< 20%), especially compared to the O (1) structural errors due to the omission of distortion effects in inverse models. These results suggest that TREs, although indispensable, should not be treated as “unambiguous” constraints on diapycnal mixing.more » « less
An official website of the United States government

