skip to main content

Title: Synthesis of a light-harvesting ruthenium porphyrin complex substituted with BODIPY units. Implications for visible light-promoted catalytic oxidations
A light-harvesting ruthenium porphyrin substituted covalently with four boron–dipyrrin (BODIPY) moieties has been synthesized and studied. The resulting complex showed an efficient decarbonylation reaction predominantly due to a photo-induced energy transfer process. Chemical oxidation of the ruthenium( ii ) BODIPY–porphyrin afforded a high-energy trans -dioxoruthenium( vi ) species that is one order of magnitude more reactive towards alkene oxidation than those analogues supported by conventional porphyrins. In the presence of visible light, the ruthenium( ii ) BODIPY–porphyrin displayed remarkable catalytic activity toward sulfide oxidation and alkene epoxidation using iodobenzene diacetate [PhI(OAc) 2 ] and 2,6-dichloropyridine N -oxide (Cl 2 pyNO) as terminal oxidants, respectively. The findings in this work highlight that porphyrin–BODIPY conjugated metal complexes are potentially useful for visible light-promoted catalytic oxidations.
; ; ; ;
Award ID(s):
1919501 1764315
Publication Date:
Journal Name:
New Journal of Chemistry
Page Range or eLocation-ID:
4977 to 4985
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to its clean and sustainable nature, solar energy has been widely recognized as a green energy source in driving a variety of reactions, ranging from small molecule activation and organic transformation to biomass valorization. Within this context, organic reactions coupled with H 2 evolution via semiconductor-based photocatalytic systems under visible light irradiation have gained increasing attention in recent years, which utilize both excited electrons and holes generated on semiconductors and produce two types of value-added products, organics and H 2 , simultaneously. Based on the nature of the organic reactions, in this review article we classify semiconductor-based photocatalytic organicmore »transformations and H 2 evolution into three categories: (i) photocatalytic organic oxidation reactions coupled with H 2 production, including oxidative upgrading of alcohols and biomass-derived intermediate compounds; (ii) photocatalytic oxidative coupling reactions integrated with H 2 generation, such as C–C, C–N, and S–S coupling reactions; and (iii) photo-reforming reactions together with H 2 formation using organic plastics, pollutants, and biomass as the substrates. Representative heterogeneous photocatalytic systems will be highlighted. Specific emphasis will be placed on their synthesis, characterization, and photocatalytic mechanism, as well as the organic reaction scope and practical application.« less
  2. Reactivity assays previously suggested that two quinol-containing MRI contrast agent sensors for H 2 O 2 , [Mn( H2qp1 )(MeCN)] 2+ and [Mn( H4qp2 )Br 2 ], could also catalytically degrade superoxide. Subsequently, [Zn( H2qp1 )(OTf)] + was found to use the redox activity of the H2qp1 ligand to catalyze the conversion of O 2 ˙ − to O 2 and H 2 O 2 , raising the possibility that the organic ligand, rather than the metal, could serve as the redox partner for O 2 ˙ − in the manganese chemistry. Here, we use stopped-flow kinetics and cryospray-ionization massmore »spectrometry (CSI-MS) analysis of the direct reactions between the manganese-containing contrast agents and O 2 ˙ − to confirm the activity and elucidate the catalytic mechanism. The obtained data are consistent with the operation of multiple parallel catalytic cycles, with both the quinol groups and manganese cycling through different oxidation states during the reactions with superoxide. The choice of ligand impacts the overall charges of the intermediates and allows us to visualize complementary sets of intermediates within the catalytic cycles using CSI-MS. With the diquinolic H4qp2 , we detect Mn( iii )-superoxo intermediates with both reduced and oxidized forms of the ligand, a Mn( iii )-hydroperoxo compound, and what is formally a Mn( iv )-oxo species with the monoquinolate/mono- para -quinone form of H4qp2 . With the monoquinolic H2qp1 , we observe a Mn( ii )-superoxo ↔ Mn( iii )-peroxo intermediate with the oxidized para -quinone form of the ligand. The observation of these species suggests inner-sphere mechanisms for O 2 ˙ − oxidation and reduction that include both the ligand and manganese as redox partners. The higher positive charges of the complexes with the reduced and oxidized forms of H2qp1 compared to those with related forms of H4qp2 result in higher catalytic activity ( k cat ∼ 10 8 M −1 s −1 at pH 7.4) that rivals those of the most active superoxide dismutase (SOD) mimics. The manganese complex with H2qp1 is markedly more stable in water than other highly active non-porphyrin-based and even some Mn( ii ) porphyrin-based SOD mimics.« less
  3. Abstract One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λ irr  > 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that canmore »drive a variety of organic transformations upon irradiation with 740 nm light. We demonstrate that these TPA ruthenium complexes can operate in an analogous manner as one-photon-absorbing photosensitizers for both energy-transfer and photoredox reactions, as well as function in concert with a transition metal co-catalyst for metallaphotoredox C–C coupling reactions.« less
  4. Two new tris-heteroleptic Ru( ii ) complexes with triphenylphosphine (PPh 3 ) coordination, cis -[Ru(phen) 2 (PPh 3 )(CH 3 CN)] 2+ (1a, phen = 1,10-phenanthroline) and cis -[Ru(biq)(phen)(PPh 3 )(CH 3 CN)] 2+ (2a, biq = 2,2′-biquinoline), were synthesized and characterized for photochemotherapeutic applications. Upon absorption of visible light, 1a exchanges a CH 3 CN ligand for a solvent water molecule. Surprisingly, the steady-state irradiation of 2a followed by electronic absorption and NMR spectroscopies reveals the photosubstitution of the PPh 3 ligand. Phosphine photoinduced ligand exchange with visible light from a Ru( ii ) polypyridyl complex has not previouslymore »been reported, and calculations reveal that it results from a trans -type influence in the excited state. Complexes 1a and 2a are not toxic against the triple negative breast cancer cell line MDA-MB-231 in the dark, but upon irradiation with blue light, the activity of both complexes increases by factors of >4.2 and 5.8, respectively. Experiments with PPh 3 alone show that the phototoxicity observed for 2a does not arise from the released phosphine ligand, indicating the role of the photochemically generated ruthenium aqua complex on the biological activity. These complexes represent a new design motif for the selective release of PPh 3 and CH 3 CN for use in photochemotherapy.« less
  5. A cobalt porphyrin molecule, namely CoTcPP (TcPP = the dianion of meso -tetra(4-carboxyphenyl)porphyrin), is intercalated into zirconium phosphate (ZrP) layers as an effective way to heterogenize a porphyrin-based molecular electrocatalyst. Fourier-transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRPD) measurements, UV-Vis spectroscopy, elemental mapping, energy dispersive X-ray (EDX) analysis, inductively coupled plasma mass spectrometry (ICP-MS) and X-ray photoelectron spectroscopy (XPS) were utilized to determine the successful intercalation of CoTcPP into ZrP. While the CoTcPP molecule is not amendable to be used as a heterogeneous catalyst in basic environment due to the carboxylic groups, the intercalated species (CoTcPP/ZrP) is effective towards watermore »oxidation from KOH aqueous solution when utilized as a heterogeneous electrocatalyst and shows remarkable catalytic durability. Electrochemical results show that CoTcPP/ZrP requires an overpotential of 0.467 V to achieve a current density of 10 mA cm −2 while the pristine α-ZrP shows negligible electrocatalytic OER behavior.« less