skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synchronous Dynamical Systems on Directed Acyclic Graphs: Complexity and Algorithms
Discrete dynamical systems serve as useful formal models to study diffusion phenomena in social networks. Motivated by applications in systems biology, several recent papers have studied algorithmic and complexity aspects of diffusion problems for dynamical systems whose underlying graphs are directed, and may contain directed cycles. Such problems can be regarded as reachability problems in the phase space of the corresponding dynamical system. We show that computational intractability results for reachability problems hold even for dynamical systems on directed acyclic graphs (dags). We also show that for dynamical systems on dags where each local function is monotone, the reachability problem can be solved efficiently.  more » « less
Award ID(s):
2027541 2028004 1633028 1745207 1916805 1918656
PAR ID:
10253360
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
35
Issue:
13
ISSN:
2159-5399
Page Range / eLocation ID:
11334-11342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Discrete dynamical systems serve as useful formal models to study diffusion phenomena in social networks. Several recent articles have studied the algorithmic and complexity aspects of some decision problems on synchronous Boolean networks, which are discrete dynamical systems whose underlying graphs are directed, and may contain directed cycles. Such problems can be regarded as reachability problems in the phase space of the corresponding dynamical system. Previous work has shown that some of these decision problems become efficiently solvable for systems on directed acyclic graphs (DAGs). Motivated by this line of work, we investigate a number of decision problems for dynamical systems whose underlying graphs are DAGs. We show that computational intractability (i.e.,PSPACE-completeness) results for reachability problems hold even for dynamical systems on DAGs. We also identify some restricted versions of dynamical systems on DAGs for which reachability problem can be solved efficiently. In addition, we show that a decision problem (namely, Convergence), which is efficiently solvable for dynamical systems on DAGs, becomesPSPACE-complete for Quasi-DAGs (i.e., graphs that become DAGs by the removal of asingleedge). In the process of establishing the above results, we also develop several structural properties of the phase spaces of dynamical systems on DAGs. 
    more » « less
  2. The classical Erdös-Gallai theorem kicked off the study ofgraph realizability by characterizing degree sequences. We extend this line of research by investigating realizability of directed acyclic graphs (DAGs)given both a local constraint via degree sequences and a global constraint via a sequence of reachability values (number of nodes reachable from a given node). We show that, without degree constraints, DAG reachability realization is solvable in linear time, whereas it is strongly NP-complete given upper bounds on in-degree or out-degree. After defining a suitable notion of bicriteria approximation based on consistency, we give two approximation algorithms achieving O(logn)-reachability consistency and O(logn)-degree consistency; the first, randomized, uses LP (Linear Program) rounding, while the second, deterministic, employs ak-setpacking heuristic. We end with two conjectures that we hope motivate further study of realizability with reachability constraints. 
    more » « less
  3. Agostino Dovier, Andrea Formisano (Ed.)
    Explainable artificial intelligence (XAI) aims at addressing complex problems by coupling solutions with reasons that justify the provided answer. In the context of Answer Set Programming (ASP) the user may be interested in linking the presence or absence of an atom in an answer set to the logic rules involved in the inference of the atom. Such explanations can be given in terms of directed acyclic graphs (DAGs). This article reports on the advancements in the development of the XAI system xASP by revising the main foundational notions and by introducing new ASP encodings to compute minimal assumption sets, explanation sequences, and explanation DAGs. 
    more » « less
  4. Abstract Explainable artificial intelligence (XAI) aims at addressing complex problems by coupling solutions with reasons that justify the provided answer. In the context of Answer Set Programming (ASP) the user may be interested in linking the presence or absence of an atom in an answer set to the logic rules involved in the inference of the atom. Such explanations can be given in terms of directed acyclic graphs (DAGs). This article reports on the advancements in the development of the XAI system xASP by revising the main foundational notions and by introducing new ASP encodings to compute minimal assumption sets, explanation sequences, and explanation DAGs. DAGs are shown to the user in an interactive form via the xASP navigator application, also introduced in this work. 
    more » « less
  5. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge weights) on n nodes and m edges with specified source vertices s_1, … , s_k, and target vertices t_1, … , t_k, and are tasked with determining if G contains vertex-disjoint (s_i,t_i)-shortest paths. For any constant k, it is known that k-DSP can be solved in polynomial time over undirected graphs and directed acyclic graphs (DAGs). However, the exact time complexity of k-DSP remains mysterious, with large gaps between the fastest known algorithms and best conditional lower bounds. In this paper, we obtain faster algorithms for important cases of k-DSP, and present better conditional lower bounds for k-DSP and its variants. Previous work solved 2-DSP over weighted undirected graphs in O(n⁷) time, and weighted DAGs in O(mn) time. For the main result of this paper, we present optimal linear time algorithms for solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms are algebraic however, and so only solve the detection rather than search version of 2-DSP (we show how to solve the search version in O(mn) time, which is faster than the previous best runtime in weighted undirected graphs, but only matches the previous best runtime for DAGs). We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources and their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take Ω(m^k) time. We show that k-EDSP can be solved over DAGs in O(mn^{k-1}) time, matching the fastest known runtime for solving k-DSP over DAGs. Previous work established conditional lower bounds for solving k-DSP and its variants via reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to 2k-DSP in DAGs and undirected graphs with O((kn)²) nodes. We improve this reduction, by showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)²) nodes (halving the number of paths needed in the reduced instance). A variant of k-DSP is the k-Disjoint Paths (k-DP) problem, where the solution paths no longer need to be shortest paths. Previous work reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k + k(k-1)/2. We improve this by showing a reduction from k-Clique to p-DP, for p = k + ⌊k²/4⌋. Under the k-Clique Hypothesis from fine-grained complexity, our results establish better conditional lower bounds for k-DSP for all k ≥ 4, and better conditional lower bounds for p-DP for all p ≤ 4031. Notably, our work gives the first nontrivial conditional lower bounds 4-DP in DAGs and 4-DSP in undirected graphs and DAGs. Before our work, nontrivial conditional lower bounds were only known for k-DP and k-DSP on such graphs when k ≥ 6. 
    more » « less