skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stable super-resolution of images: theoretical study
Abstract We study the ubiquitous super-resolution problem, in which one aims at localizing positive point sources in an image, blurred by the point spread function of the imaging device. To recover the point sources, we propose to solve a convex feasibility program, which simply finds a non-negative Borel measure that agrees with the observations collected by the imaging device. In the absence of imaging noise, we show that solving this convex program uniquely retrieves the point sources, provided that the imaging device collects enough observations. This result holds true if the point spread function of the imaging device can be decomposed into horizontal and vertical components and if the translations of these components form a Chebyshev system, i.e., a system of continuous functions that loosely behave like algebraic polynomials. Building upon the recent results for one-dimensional signals, we prove that this super-resolution algorithm is stable, in the generalized Wasserstein metric, to model mismatch (i.e., when the image is not sparse) and to additive imaging noise. In particular, the recovery error depends on the noise level and how well the image can be approximated with well-separated point sources. As an example, we verify these claims for the important case of a Gaussian point spread function. The proofs rely on the construction of novel interpolating polynomials—which are the main technical contribution of this paper—and partially resolve the question raised in Schiebinger et al. (2017, Inf. Inference, 7, 1–30) about the extension of the standard machinery to higher dimensions.  more » « less
Award ID(s):
1704204
PAR ID:
10253370
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Information and Inference: A Journal of the IMA
Volume:
10
Issue:
1
ISSN:
2049-8772
Page Range / eLocation ID:
161 to 193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The two-point source longitudinal resolution of three-dimensional integral imaging depends on several factors including the number of sensors, sensor pixel size, pitch between sensors, and the lens point spread function. We assume the two-point sources to be resolved if their point spread functions can be resolved in any one of the sensors. Previous studies of integral imaging longitudinal resolution either rely on geometrical optics formulation or assume the point spread function to be of sub-pixel size, thus neglecting the effect of the lens. These studies also assume both point sources to be in focus in captured elemental images. More importantly, the previous analysis does not consider the effect of noise. In this manuscript, we use the Gaussian process-based two-point source resolution criterion to overcome these limitations. We compute the circle of confusion to model the out-of-focus blurring effect. The Gaussian process-based two-point source resolution criterion allows us to study the effect of noise on the longitudinal resolution. In the absence of noise, we also present a simple analytical expression for longitudinal resolution which approximately matches the Gaussian process-based formulation. Also, we investigate the dependence of the longitudinal resolution on the parallax of the integral imaging system. We present optical experiments to validate our results. The experiments demonstrate agreement with our Gaussian process-based two-point source resolution criteria. 
    more » « less
  2. Imaging beyond the diffraction limit barrier has attracted wide attention due to the ability to resolve previously hidden image features. Of the various super-resolution microscopy techniques available, a particularly simple method called saturated excitation microscopy (SAX) requires only simple modification of a laser scanning microscope: The illumination beam power is sinusoidally modulated and driven into saturation. SAX images are extracted from the harmonics of the modulation frequency and exhibit improved spatial resolution. Unfortunately, this elegant strategy is hindered by the incursion of shot noise that prevents high-resolution imaging in many realistic scenarios. Here, we demonstrate a technique for super-resolution imaging that we call computational saturated absorption (CSA) in which a joint deconvolution is applied to a set of images with diversity in spatial frequency support among the point spread functions (PSFs) used in the image formation with saturated laser scanning fluorescence microscopy. CSA microscopy allows access to the high spatial frequency diversity in a set of saturated effective PSFs, while avoiding image degradation from shot noise. 
    more » « less
  3. Point scanning imaging systems (e.g. scanning electron or laser scanning confocal microscopes) are perhaps the most widely used tools for high resolution cellular and tissue imaging. Like all other imaging modalities, the resolution, speed, sample preservation, and signal-to-noise ratio (SNR) of point scanning systems are difficult to optimize simultaneously. In particular, point scanning systems are uniquely constrained by an inverse relationship between imaging speed and pixel resolution. Here we show these limitations can be miti gated via the use of deep learning-based super-sampling of undersampled images acquired on a point-scanning system, which we termed point -scanning super-resolution (PSSR) imaging. Oversampled ground truth images acquired on scanning electron or Airyscan laser scanning confocal microscopes were used to generate semi-synthetictrain ing data for PSSR models that were then used to restore undersampled images. Remarkably, our EM PSSR model was able to restore undersampled images acquired with different optics, detectors, samples, or sample preparation methods in other labs . PSSR enabled previously unattainable xy resolution images with our serial block face scanning electron microscope system. For fluorescence, we show that undersampled confocal images combined with a multiframe PSSR model trained on Airyscan timelapses facilitates Airyscan-equivalent spati al resolution and SNR with ~100x lower laser dose and 16x higher frame rates than corresponding high-resolution acquisitions. In conclusion, PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed, and sensitivity. 
    more » « less
  4. In this paper, we have used the angular spectrum propagation method and numerical simulations of a single random phase encoding (SRPE) based lensless imaging system, with the goal of quantifying the spatial resolution of the system and assessing its dependence on the physical parameters of the system. Our compact SRPE imaging system consists of a laser diode that illuminates a sample placed on a microscope glass slide, a diffuser that spatially modulates the optical field transmitting through the input object, and an image sensor that captures the intensity of the modulated field. We have considered two-point source apertures as the input object and analyzed the propagated optical field captured by the image sensor. The captured output intensity patterns acquired at each lateral separation between the input point sources were analyzed using a correlation between the captured output pattern for the overlapping point-sources, and the captured output intensity for the separated point sources. The lateral resolution of the system was calculated by finding the lateral separation values of the point sources for which the correlation falls below a threshold value of 35% which is a value chosen in accordance with the Abbe diffraction limit of an equivalent lens-based system. A direct comparison between the SRPE lensless imaging system and an equivalent lens-based imaging system with similar system parameters shows that despite being lensless, the performance of the SRPE system does not suffer as compared to lens-based imaging systems in terms of lateral resolution. We have also investigated how this resolution is affected as the parameters of the lensless imaging system are varied. The results show that SRPE lensless imaging system shows robustness to object to diffuser-to-sensor distance, pixel size of the image sensor, and the number of pixels of the image sensor. To the best of our knowledge, this is the first work to investigate a lensless imaging system’s lateral resolution, robustness to multiple physical parameters of the system, and comparison to lens-based imaging systems. 
    more » « less
  5. In this paper, we assess the noise-susceptibility of coherent macroscopic single random phase encoding (SRPE) lensless imaging by analyzing how much information is lost due to the presence of camera noise. We have used numerical simulation to first obtain the noise-free point spread function (PSF) of a diffuser-based SRPE system. Afterwards, we generated a noisy PSF by introducing shot noise, read noise and quantization noise as seen in a real-world camera. Then, we used various statistical measures to look at how the shared information content between the noise-free and noisy PSF is affected as the camera-noise becomes stronger. We have run identical simulations by replacing the diffuser in the lensless SRPE imaging system with lenses for comparison with lens-based imaging. Our results show that SRPE lensless imaging systems are better at retaining information between corresponding noisy and noiseless PSFs under high camera noise than lens-based imaging systems. We have also looked at how physical parameters of diffusers such as feature size and feature height variation affect the noise robustness of an SRPE system. To the best of our knowledge, this is the first report to investigate noise robustness of SRPE systems as a function of diffuser parameters and paves the way for the use of lensless SRPE systems to improve imaging in the presence of image sensor noise. 
    more » « less