skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective Strategies for Increasing Student-to-Instructor Interaction In an Online Course.
Student-to-instructor interaction is crucial in online education. Through this interaction, the instructors guide students on contents and create a learning environment that allows students to communicate between themselves. The student-to-instructor interaction is of the factors that determine student participation and satisfaction. Thus, this study uses a systematic review to discuss the strategies that instructors can use to increase student-to-instructor interaction in online courses. This study highlights four strategies, including the instructor’s participation in online courses, the feedback from an online instructor, the availability of an online instructor and timely response, and pre- and during class communications in online courses. The online instructors and instructional designers may use these strategies to improve interaction with the students. These strategies may also assist instructional designers and instructors who develop and teach hybrid or blended courses. Keywords: student-to-instructor, online course, instructor participation, instructor feedback, instructor availability, and class communication  more » « less
Award ID(s):
1826758
PAR ID:
10253391
Author(s) / Creator(s):
Date Published:
Journal Name:
The online journal of new horizons in education
Volume:
10
Issue:
4
ISSN:
2146-7374
Page Range / eLocation ID:
201-205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundThe first day of class helps students learn about what to expect from their instructors and courses. Messaging used by instructors, which varies in content and approach on the first day, shapes classroom social dynamics and can affect subsequent learning in a course. Prior work established the non-content Instructor Talk Framework to describe the language that instructors use to create learning environments, but little is known about the extent to which students detect those messages. In this study, we paired first day classroom observation data with results from student surveys to measure how readily students in introductory STEM courses detect non-content Instructor Talk. ResultsTo learn more about the instructor and student first day experiences, we studied 11 introductory STEM courses at two different institutions. The classroom observation data were used to characterize course structure and use of non-content Instructor Talk. The data revealed that all instructors spent time discussing their instructional practices, building instructor/student relationships, and sharing strategies for success with their students. After class, we surveyed students about the messages their instructors shared during the first day of class and determined that the majority of students from within each course detected messaging that occurred at a higher frequency. For lower frequency messaging, we identified nuances in what students detected that may help instructors as they plan their first day of class. ConclusionsFor instructors who dedicate the first day of class to establishing positive learning environments, these findings provide support that students are detecting the messages. Additionally, this study highlights the importance of instructors prioritizing the messages they deem most important and giving them adequate attention to more effectively reach students. Setting a positive classroom environment on the first day may lead to long-term impacts on student motivation and course retention. These outcomes are relevant for all students, but in particular for students in introductory STEM courses which are often critical prerequisites for being in a major. 
    more » « less
  2. null (Ed.)
    Little is known regarding the use of, and factors related with, interaction-oriented practices. In this study we investigate instructors’ use of interaction-oriented practices in online college courses. We begin by drawing on several strands of literature to offer a person-purpose interaction framework for categorizing interaction-oriented practices. The framework’s six sub-domains integrate for whom students are interacting (instructor, student, content) with the interaction’s pedagogical purpose (academic, social, managerial). Subsequently, we examine factors that predict instructors’ use of these six domains of practices, including instructors’ characteristics and their perceptions of online learning, using a sample of (n = 126) community college instructors teaching online courses. The results show that instructors using more interaction-oriented practices consistently have greater employment status and teaching load, greater self-efficacy for using learning management systems, and greater perceived benefits of online learning for students, with subtle distinctions found across sub-domains. The findings have several implications for future research examining pedagogical behavior, as well as the design of professional development activities aimed at enhancing the use of effective online instructional practices among college instructors. 
    more » « less
  3. Technology can assist instructional designers and teachers in meeting the needs of learners in traditional classrooms and virtual course environments. During the COVID-19 pandemic, many teachers and instructional designers began looking for resources they could use for hybrid and online course delivery. Many found that the cost of some technology tools was well outside of their financial means to assist them in meeting student learning outcomes. However, some digital tools provide free access for educators and are beneficial to students. In this article, the authors shared five tools they have used in developing and teaching online and traditional technology courses at the college level. They share how they used a learning management system tool, a collaboration tool, a search engine tool, a content creation tool, and a content sharing tool to engage students in their courses. As teachers look for alternatives to use as they move content from classroom teaching to online instruction, this article can help them consider the recommended tools for instruction. Teachers, instructors, and instructional designers may explore the free digital tools in this article and do further research on other digital tools to support student learning in their disciplines. 
    more » « less
  4. null (Ed.)
    Engineering instructors often use physical manipulatives such as foam beams, rolling cylinders, and large representations of axis systems to demonstrate mechanics concepts and help students visualize systems. Additional benefits are possible when manipulatives are in the hands of individual students or small teams of students who can explore concepts at their own pace and focus on their specific points of confusion. Online learning modalities require new strategies to promote spatial visualization and kinesthetic learning. Potential solutions include creating videos of the activities, using CAD models to demonstrate the principles, programming computer simulations, and providing hands-on manipulatives to students for at-home use. This Work-in-Progress paper discusses our experiences with this last strategy in statics courses two western community colleges and a western four-year university where we supplied students with their own hands-on kits. We have previously reported on the successful implementation of a hands-on statics kit consisting of 3D printed components and standard hardware. The kit was originally designed for use by teams of students during class to engage with topics such as vectors, moments, and rigid body equilibrium. With the onset of the COVID-19 pandemic and shift to online instruction, the first author developed a scaled down version of the kit for at-home use by individual students and modified the associated activity worksheets accordingly. For the community college courses, local students picked up their models at the campus bookstore. We also shipped some of the kits to students who were unable to come to campus, including some in other countries. Due to problems with printing and availability of materials, only 18 kits were available for the class of 34 students at the university implementation. Due to this circumstance, students were placed in teams and asked to work together virtually, one student showing the kit to the other student as they worked through the worksheet prompts. One community college instructor took this approach as well for a limited number of international students who did not receive their kits in a timely manner due to shipping problems. Two instructors assigned the hands-on kits as asynchronous learning activities in their respective online courses, with limited guidance on their use. The third used the kits primarily in synchronous online class meetings. We found that students’ reaction to the models varied by pilot site and presume that implementation differences contributed to this variation. In all cases, student feedback was less positive than it has been for face-to-face courses that used the models from which the take home kit was adapted. Our main conclusion is that implementation matters. Doing hands-on learning in an online course requires some fundamental rethinking about how the learning is structured and scaffolded. 
    more » « less
  5. Flexible classroom spaces, which have movable tables and chairs that can be easily rearranged into different layouts, make it easier for instructors to effectively implement active learning than a traditional lecture hall. Instructors can move throughout the room to interact with students during active learning, and they can rearrange the tables into small groups to facilitate conversation between students. Classroom technology, such as wall-mounted monitors and movable whiteboards, also facilitates active learning by allowing students to collaborate. In addition to enabling active learning, the flexible classroom can still be arranged in front-facing rows that support traditional lecture-based pedagogies. As a result, instructors do not have to make time- and effort-intensive changes to the way their courses are taught in order to use the flexible classroom. Instead, they can make small changes to add active learning. We are in the second year of a study of flexible classroom spaces funded by the National Science Foundation’s Division of Undergraduate Education. This project asks four research questions that investigate the relationships between the instructor, the students, and the classroom: 1) What pedagogy do instructors use in a flexible classroom space? 2) How do instructors take advantage of the instructional affordances (including the movable furniture, movable whiteboards, wall-mounted whiteboards, and wall-mounted monitors) of a flexible classroom? 3) What is the impact of faculty professional development on instructors’ use of flexible classroom spaces? and 4) How does the classroom influence the ways students interpret and engage in group learning activities? In the first year of our study we have developed five research instruments to answer these questions: a three-part classroom observation protocol, an instructor interview protocol, two instructor surveys, and a student survey. We have collected data from nine courses taught in one of ten flexible classrooms at the University of Michigan during the Fall 2018 semester. Two of these courses were first-year introduction to engineering courses co-taught by two instructors, and the other seven courses were sophomore- and junior-level core technical courses taught by one instructor. Five instructors participated in a faculty learning community that met three times during the semester to discuss active learning, to learn how to make the best use of the flexible classroom affordances, and to plan activities to implement in their courses. In each course we gathered data from the perspective of the instructor (through pre- and post-semester interviews), the researcher (through observations of three class meetings with our observation protocol), and the students (through conducting a student survey at the end of the semester). This poster presents qualitative and qualitative analyses of these data to answer our research questions, along with evidence based best practices for effectively using a flexible classroom. 
    more » « less