skip to main content

Title: Towards complete and error-free genome assemblies of all vertebrate species
Abstract High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species 1–4 . To address this issue, the international Genome 10K (G10K) consortium 5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant more » vertebrate species and to help to enable a new era of discovery across the life sciences. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1955368 1444167 0132032
Publication Date:
Journal Name:
Page Range or eLocation-ID:
737 to 746
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION Transposable elements (TEs), repeat expansions, and repeat-mediated structural rearrangements play key roles in chromosome structure and species evolution, contribute to human genetic variation, and substantially influence human health through copy number variants, structural variants, insertions, deletions, and alterations to gene transcription and splicing. Despite their formative role in genome stability, repetitive regions have been relegated to gaps and collapsed regions in human genome reference GRCh38 owing to the technological limitations during its development. The lack of linear sequence in these regions, particularly in centromeres, resulted in the inability to fully explore the repeat content of the human genome in the context of both local and regional chromosomal environments. RATIONALE Long-read sequencing supported the complete, telomere-to-telomere (T2T) assembly of the pseudo-haploid human cell line CHM13. This resource affords a genome-scale assessment of all human repetitive sequences, including TEs and previously unknown repeats and satellites, both within and outside of gaps and collapsed regions. Additionally, a complete genome enables the opportunity to explore the epigenetic and transcriptional profiles of these elements that are fundamental to our understanding of chromosome structure, function, and evolution. Comparative analyses reveal modes of repeat divergence, evolution, and expansion or contraction with locus-level resolution. RESULTS We implementedmore »a comprehensive repeat annotation workflow using previously known human repeats and de novo repeat modeling followed by manual curation, including assessing overlaps with gene annotations, segmental duplications, tandem repeats, and annotated repeats. Using this method, we developed an updated catalog of human repetitive sequences and refined previous repeat annotations. We discovered 43 previously unknown repeats and repeat variants and characterized 19 complex, composite repetitive structures, which often carry genes, across T2T-CHM13. Using precision nuclear run-on sequencing (PRO-seq) and CpG methylated sites generated from Oxford Nanopore Technologies long-read sequencing data, we assessed RNA polymerase engagement across retroelements genome-wide, revealing correlations between nascent transcription, sequence divergence, CpG density, and methylation. These analyses were extended to evaluate RNA polymerase occupancy for all repeats, including high-density satellite repeats that reside in previously inaccessible centromeric regions of all human chromosomes. Moreover, using both mapping-dependent and mapping-independent approaches across early developmental stages and a complete cell cycle time series, we found that engaged RNA polymerase across satellites is low; in contrast, TE transcription is abundant and serves as a boundary for changes in CpG methylation and centromere substructure. Together, these data reveal the dynamic relationship between transcriptionally active retroelement subclasses and DNA methylation, as well as potential mechanisms for the derivation and evolution of new repeat families and composite elements. Focusing on the emerging T2T-level assembly of the HG002 X chromosome, we reveal that a high level of repeat variation likely exists across the human population, including composite element copy numbers that affect gene copy number. Additionally, we highlight the impact of repeats on the structural diversity of the genome, revealing repeat expansions with extreme copy number differences between humans and primates while also providing high-confidence annotations of retroelement transduction events. CONCLUSION The comprehensive repeat annotations and updated repeat models described herein serve as a resource for expanding the compendium of human genome sequences and reveal the impact of specific repeats on the human genome. In developing this resource, we provide a methodological framework for assessing repeat variation within and between human genomes. The exhaustive assessment of the transcriptional landscape of repeats, at both the genome scale and locally, such as within centromeres, sets the stage for functional studies to disentangle the role transcription plays in the mechanisms essential for genome stability and chromosome segregation. Finally, our work demonstrates the need to increase efforts toward achieving T2T-level assemblies for nonhuman primates and other species to fully understand the complexity and impact of repeat-derived genomic innovations that define primate lineages, including humans. Telomere-to-telomere assembly of CHM13 supports repeat annotations and discoveries. The human reference T2T-CHM13 filled gaps and corrected collapsed regions (triangles) in GRCh38. Combining long read–based methylation calls, PRO-seq, and multilevel computational methods, we provide a compendium of human repeats, define retroelement expression and methylation profiles, and delineate locus-specific sites of nascent transcription genome-wide, including previously inaccessible centromeres. SINE, short interspersed element; SVA, SINE–variable number tandem repeat– Alu ; LINE, long interspersed element; LTR, long terminal repeat; TSS, transcription start site; pA, xxxxxxxxxxxxxxxx.« less
  2. Abstract Background

    The Aldabra giant tortoise (Aldabrachelys gigantea) is one of only two giant tortoise species left in the world. The species is endemic to Aldabra Atoll in Seychelles and is listed as Vulnerable on the International Union for Conservation of Nature Red List (v2.3) due to its limited distribution and threats posed by climate change. Genomic resources for A. gigantea are lacking, hampering conservation efforts for both wild and ex situpopulations. A high-quality genome would also open avenues to investigate the genetic basis of the species’ exceptionally long life span.


    We produced the first chromosome-level de novo genome assembly of A. gigantea using PacBio High-Fidelity sequencing and high-throughput chromosome conformation capture. We produced a 2.37-Gbp assembly with a scaffold N50 of 148.6 Mbp and a resolution into 26 chromosomes. RNA sequencing–assisted gene model prediction identified 23,953 protein-coding genes and 1.1 Gbp of repetitive sequences. Synteny analyses among turtle genomes revealed high levels of chromosomal collinearity even among distantly related taxa. To assess the utility of the high-quality assembly for species conservation, we performed a low-coverage resequencing of 30 individuals from wild populations and two zoo individuals. Our genome-wide population structure analyses detected genetic population structure in the wild and identifiedmore »the most likely origin of the zoo-housed individuals. We further identified putatively deleterious mutations to be monitored.


    We establish a high-quality chromosome-level reference genome for A. gigantea and one of the most complete turtle genomes available. We show that low-coverage whole-genome resequencing, for which alignment to the reference genome is a necessity, is a powerful tool to assess the population structure of the wild population and reveal the geographic origins of ex situ individuals relevant for genetic diversity management and rewilding efforts.

    « less
  3. Abstract

    Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole,Anolis sagrei– a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes ofA. sagrei.

  4. Abstract Background Modern sequencing technologies should make the assembly of the relatively small mitochondrial genomes an easy undertaking. However, few tools exist that address mitochondrial assembly directly. Results As part of the Vertebrate Genomes Project (VGP) we develop mitoVGP, a fully automated pipeline for similarity-based identification of mitochondrial reads and de novo assembly of mitochondrial genomes that incorporates both long (> 10 kbp, PacBio or Nanopore) and short (100–300 bp, Illumina) reads. Our pipeline leads to successful complete mitogenome assemblies of 100 vertebrate species of the VGP. We observe that tissue type and library size selection have considerable impact on mitogenome sequencing and assembly. Comparing our assemblies to purportedly complete reference mitogenomes based on short-read sequencing, we identify errors, missing sequences, and incomplete genes in those references, particularly in repetitive regions. Our assemblies also identify novel gene region duplications. The presence of repeats and duplications in over half of the species herein assembled indicates that their occurrence is a principle of mitochondrial structure rather than an exception, shedding new light on mitochondrial genome evolution and organization. Conclusions Our results indicate that even in the “simple” case of vertebrate mitogenomes the completeness of many currently available reference sequences can be further improved, and cautionmore »should be exercised before claiming the complete assembly of a mitogenome, particularly from short reads alone.« less
  5. Koepfli, Klaus-Peter (Ed.)
    Abstract Genomics research has relied principally on the establishment and curation of a reference genome for the species. However, it is increasingly recognized that a single reference genome cannot fully describe the extent of genetic variation within many widely distributed species. Pangenome representations are based on high-quality genome assemblies of multiple individuals and intended to represent the broadest possible diversity within a species. A Bovine Pangenome Consortium (BPC) has recently been established to begin assembling genomes from more than 600 recognized breeds of cattle, together with other related species to provide information on ancestral alleles and haplotypes. Previously reported de novo genome assemblies for Angus, Brahman, Hereford, and Highland breeds of cattle are part of the initial BPC effort. The present report describes a complete single haplotype assembly at chromosome-scale for a fullblood Simmental cow from an F1 bison–cattle hybrid fetus by trio binning. Simmental cattle, also known as Fleckvieh due to their red and white spots, originated in central Europe in the 1830s as a triple-purpose breed selected for draught, meat, and dairy production. There are over 50 million Simmental cattle in the world, known today for their fast growth and beef yields. This assembly (ARS_Simm1.0) is similar inmore »length to the other bovine assemblies at 2.86 Gb, with a scaffold N50 of 102 Mb (max scaffold 156.8 Mb) and meets or exceeds the continuity of the best Bos taurus reference assemblies to date.« less