Abstract Although cyclic voltammetry (CV) measurements in solution have been widely used to determine the highest occupied molecular orbital energy (EHOMO) of semiconducting organic molecules, an understanding of the experimentally observed discrepancies due to the solvent used is lacking. To explain these differences, we investigate the solvent effects onEHOMOby combining density functional theory and molecular dynamics calculations for four donor molecules with a common backbone moiety. We compare the experimentalEHOMOvalues to the calculated values obtained from either implicit or first solvation shell theories. We find that the first solvation shell method can capture theEHOMOvariation arising from the functional groups in solution, unlike the implicit method. We further applied the first solvation shell method to other semiconducting organic molecules measured in solutions for different solvents. We find that theEHOMOobtained using an implicit method is insensitive to solvent choice. The first solvation shell, however, producesEHOMOvalues that are sensitive to solvent choices and agrees with published experimental results. The solvent sensitivity arises from a hierarchy of three effects: (1) the solute electronic state within a surrounding dielectric continuum, (2) ambient temperature or solvent atoms changing the solute geometry, and (3) electronic interactions between the solute and solvents. The implicit method, on the other hand, only captures the effect of a dielectric environment. Our findings suggest thatEHOMOobtained by CV measurements should account for the influence of solvent when the results are reported, interpreted, or compared to other molecules.
more »
« less
Why is the Energy of the Singly Occupied Orbital in Some Radicals below the Highest Occupied Orbital Energy?
- Award ID(s):
- 1855470
- PAR ID:
- 10253404
- Date Published:
- Journal Name:
- Chemistry of Materials
- Volume:
- 33
- Issue:
- 10
- ISSN:
- 0897-4756
- Page Range / eLocation ID:
- 3678 to 3691
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this article, we introduce the occupied-virtual orbitals for chemical valence (OVOCV). The OVOCVs can replace or complement the closely related idea of the natural orbitals for chemical valence (NOCV). The input is a difference density matrix connecting any initial single determinant to any final determinant, at a given molecular geometry, and a given one-particle basis. This arises in problems such as orbital rearrangement or charge-transfer in energy decomposition analysis. The OVOCVs block-diagonalize the density difference operator into 2 × 2 blocks which are spanned by one level that is filled in the initial state (the occupied OVOCV) and one which is empty (the virtual OVOCV). By contrast, the NOCVs fully diagonalize the density difference matrix, and therefore are orbitals with mixed occupied-virtual character. Use of the OVOCVs makes it much easier to identify the donor and acceptor orbitals. We also introduce two different types of energy decomposition analysis (EDA) methods with the OVOCVs, and most importantly, a charge decomposition analysis (CDA) method that fixes the unreasonably large charge transfer amount obtained directly from NOCV analysis.more » « less
-
Keeping students engaged with the course contents between classes is challenging. Although out-of-class activities are used to address this challenge, they have limited impacts on improving student's engagement outside the classroom because of the lack of real-time feedback and progress updates. For this reason, these types of activities are less appealing to the current generation of students who feel the pull of instant gratification more intensely. This paper presents a mobile learning system, named Dysgu, which enables students to work on their out-of-class activities, compare their progress with the rest of the class, and improve their self-efficacy. The goal of Dysgu is to better engage students with out-of-class activities and reduce procrastination in those activities. By using Dysgu, faculty can facilitate and monitor learning even after the students leave the classroom and intervene early when students fall behind their peers.more » « less
-
Kellogg, Douglas (Ed.)Condensates have emerged as a new way to understand how cells are orga- nized, and have been invoked to play crucial roles in essentially all cellular processes. In this view, the cell is occupied by numerous assemblies, each composed of member proteins and nucleic acids that preferentially interact with each other. However, available visual represen- tations of condensates fail to communicate the growing body of knowledge about how con- densates form and function. The resulting focus on only a subset of the potential implications of condensates can skew interpretations of results and hinder the generation of new hypoth- eses. Here we summarize the discussion from a workshop that brought together cell biolo- gists, visualization and computation specialists, and other experts who specialize in thinking about space and ways to represent it. We place the recent advances in condensate research in a historical perspective that describes evolving views of the cell; highlight different attri- butes of condensates that are not well-served by current visual conventions; and survey po- tential approaches to overcome these challenges. An important theme of these discussions is that the new understanding on the roles of condensates exposes broader challenges in visual representations that apply to cell biological research more generally.more » « less
An official website of the United States government

