Cleaning painted surfaces of their grime, aged varnishes, and discolored overpaint is one of the most common interventive treatments for art conservators. Carefully concocted solvent mixtures navigate the solubility differences between the material removed and the original paint underneath. However, these solutions may be altered by differential evaporation rates of the component solvents (zeotropic behavior), potentially leading to ineffectively weak cleaning or conversely overly strong residual liquid capable of damaging the underlying paint. Azeotropic solvent blends, which maintain a constant composition during evaporation, offer a promising solution. These blends consist of two or more solvents combined at precise concentrations to function as a single solvent. Additionally, pressure-maximum azeotropes feature higher vapor pressure compared to other mixtures, further minimizing contact time and sorption of the solvents into artworks. This study examines azeotropes of isopropanol with n-hexane and 2-butanone in cyclohexane, which have been used previously in art conservation. The evaporation behavior at room temperature of these boiling point azeotropes was assessed using vapor pressure measurements, refractive index determinations, gravimetric analysis, and gas chromatography. Results showed changes in composition during evaporation and found that the actual room temperature azeotropic composition can vary between 1 and 10% v/v in concentration with those commonly reported at their boiling points. Art conservators should be cautious when using azeotropic blends reported at boiling points significantly higher than room temperature. To ensure the safety and efficacy of these mixtures, it is recommended to determine individual azeotropic cleaning blends experimentally before their use.
more »
« less
A unified understanding of the cononsolvency of polymers in binary solvent mixtures
The standard random phase approximation (RPA) model is applied to investigate the cononsolvency of polymers in mixtures of two good solvents. It is shown that in the RPA framework, the two types of cononsolvency behaviors reported in previous theoretical studies can be unified under the same concept of mean-field density correlations. The two types of cononsolvency are distinguished by the solvent composition at which maximum immiscibility is predicted to occur. The maximum immiscibility occurs with the cosolvent being the minor solvent if the driving mechanism is the preferential solvation of polymers. For the cononsolvency driven by the preferential mixing of solvents, the maximum immiscibility is predicted at a symmetric solvent composition. An interplay of the two driving forces gives rise to a reentrant behavior in which the cononsolvency of the two types switches from one to the other, through a “conventional” region where the overall solvent quality varies monotonically with the solvent composition. The RPA model developed in this work provides a unified analytical framework for understanding the conformational and solubility transition of polymers in multi-solvent mixtures. Such findings highlight the complex role played by the solvents in polymer solutions, a problem of fundamental and practical interest in diverse applications of materials science.
more »
« less
- Award ID(s):
- 1757220
- PAR ID:
- 10253506
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 16
- Issue:
- 33
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 7789 to 7796
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Water + elastin-like polypeptides (ELPs) exhibit a transition temperature below which the chains transform from collapsed to expanded states, reminiscent of the cold denaturation of proteins. This conformational change coincides with liquid–liquid phase separation. A statistical-thermodynamics theory is used to model the fluid-phase behavior of ELPs in aqueous solution and to extrapolate the behavior at ambient conditions over a range of pressures. At low pressures, closed-loop liquid–liquid equilibrium phase behavior is found, which is consistent with that of other hydrogen-bonding solvent + polymer mixtures. At pressures evocative of deep-sea conditions, liquid–liquid immiscibility bounded by two lower critical solution temperatures (LCSTs) is predicted. As pressure is increased further, the system exhibits two separate regions of closed-loop of liquid–liquid equilibrium (LLE). The observation of bimodal LCSTs and two re-entrant LLE regions herald a new type of binary global phase diagram: Type XII. At high-ELP concentrations the predicted phase diagram resembles a protein pressure denaturation diagram; possible “molten-globule”-like states are observed at low concentration.more » « less
-
Abstract Despite having favorable optoelectronic and thermomechanical properties, the wide application of semiconducting polymers still suffers from limitations, particularly with regards to their processing in solution which necessitates toxic chlorinated solvents due to their intrinsic low solubility in common organic solvents. This work presents a novel greener approach to the fabrication of organic electronics without the use of toxic chlorinated solvents. Low‐molecular‐weight non‐toxic branched polyethylene (BPE) is used as a solvent to process diketopyrrolopyrrole‐based semiconducting polymers, then the solvent‐induced phase separation (SIPS) technique is adopted to produce films of semiconducting polymers from solution for the fabrication of organic field‐effect transistors (OFETs). The films of semiconducting polymers prepared from BPE using SIPS show a more porous granular morphology with preferential edge‐on crystalline orientation compared to the semiconducting polymer film processed from chloroform. OFETs based on the semiconducting films processed from BPE show similar device characteristics to those prepared from chloroform without thermal annealing, confirming the efficiency and suitability of BPE to replace traditional chlorinated solvents for green organic electronics. This new greener processing approach for semiconducting polymers is potentially compatible with different printing techniques and is particularly promising for the preparation of porous semiconducting layers and the fabrication of OFET‐based electronics.more » « less
-
Betulin is a promising natural organic substance due to its antibacterial, fungicidal, and antitumor properties, as are their derivatives. The particle size of betulin can reach several tens of micrometers, and its thickness is several microns. There are various ways of processing betulin, but the most promising are solution methods (applying thin layers, impregnation, etc.). Application or impregnation of various materials is carried out using betulin; however, currently known solvents do not allow obtaining solutions with the necessary content of it. Since a number of direct solvents are already known for betulin, which provides only low-concentration solutions, the use of complex systems based on two solvents can become the optimal solution to the problem. The literature data show that the use of mixtures of solvents allows for the preparation of homogeneous solutions, for example, for natural polymers like cellulose, etc. This approach to obtaining solutions has become the basis for the processing of betulin. The use of a mixed solvent based on ethanol and DMSO for the preparation of betulin solutions has been proposed for the first time. The solubility of betulin in a mixture system with a ratio of components of 50 wt.% to 50 wt.% was studied, and a solubility curve was plotted. It is shown that the use of a two-component solvent makes it possible to transfer up to 10% of betulin into solution, which is almost twice as much as compared to already known solvents. The rheological properties of the obtained solutions have been studied. The viscosity of betulin solutions in a complex solvent depends on its content and temperature, so for 7% solutions at 70 °C, it is approximately 0.008 Pa*s. Applying betulin to the surface of the cardboard increases its hydrophobic properties and repellency.more » « less
-
In this study, we simulate mechanically interlocked semiflexible ring polymers inspired by the minicircles of kinetoplast DNA (kDNA) networks. Using coarse-grained molecular dynamics simulations, we investigate the impact of molecular topological linkage and nanoconfinement on the conformational properties of two- and three-ring polymer systems in varying solvent qualities. Under good-quality solvents, for two-ring systems, a higher number of crossing points lead to a more internally constrained structure, reducing their mean radius of gyration. In contrast, three-ring systems, which all had the same crossing number, exhibited more similar sizes. In unfavorable solvents, structures collapse, forming compact configurations with increased contacts. The morphological diversity of structures primarily arises from topological linkage rather than the number of rings. In three-ring systems with different topological conformations, structural uniformity varies based on link types. Extreme confinement induces isotropic and extended conformations for catenated polymers, aligning with experimental results for kDNA networks and influencing the crossing number and overall shape. Finally, the flat-to-collapse transition in extreme confinement occurs earlier (at relatively better solvent conditions) compared to non-confined systems. This study offers valuable insights into the conformational behavior of mechanically interlocked ring polymers, highlighting challenges in extrapolating single-molecule analyses to larger networks such as kDNA.more » « less
An official website of the United States government

