skip to main content

Title: Universal Geometric Graphs
We introduce and study the problem of constructing geometric graphs that have few vertices and edges and that are universal for planar graphs or for some sub-class of planar graphs; a geometric graph is universal for a class H of planar graphs if it contains an embedding, i.e., a crossing-free drawing, of every graph in H . Our main result is that there exists a geometric graph with n vertices and O(nlogn) edges that is universal for n-vertex forests; this extends to the geometric setting a well-known graph-theoretic result by Chung and Graham, which states that there exists an n-vertex graph with O(nlogn) edges that contains every n-vertex forest as a subgraph. Our O(nlogn) bound on the number of edges is asymptotically optimal. We also prove that, for every h>0 , every n-vertex convex geometric graph that is universal for the class of the n-vertex outerplanar graphs has Ωh(n2−1/h) edges; this almost matches the trivial O(n2) upper bound given by the n-vertex complete convex geometric graph. Finally, we prove that there is an n-vertex convex geometric graph with n vertices and O(nlogn) edges that is universal for n-vertex caterpillars.
Authors:
; ;
Award ID(s):
1800734
Publication Date:
NSF-PAR ID:
10253559
Journal Name:
Graph-Theoretic Concepts in Computer Science (WG 2020)
Volume:
12301
Sponsoring Org:
National Science Foundation
More Like this
  1. One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $n$-vertex graph with more than $\frac{k-1}{2}n$ edges contains any $k$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $r$-uniform hypergraph, i.e., a hypergraph where each edge contains $r$ vertices. A tight tree is an $r$-uniform hypergraph such that there is an ordering $v_1,\ldots,v_n$ of its its vertices with the following property: the vertices $v_1,\ldots,v_r$ form anmore »edge and for every $i>r$, there is a single edge $e$ containing the vertex $v_i$ and $r-1$ of the vertices $v_1,\ldots,v_{i-1}$, and $e\setminus\{v_i\}$ is a subset of one of the edges consisting only of vertices from $v_1,\ldots,v_{i-1}$. The conjecture of Kalai asserts that every $n$-vertex $r$-uniform hypergraph with more than $\frac{k-1}{r}\binom{n}{r-1}$ edges contains every $k$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $n$ for every $r$ and $k$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $r$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $r$ and $k$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices.« less
  2. In the Maximum Independent Set problem we are asked to find a set of pairwise nonadjacent vertices in a given graph with the maximum possible cardinality. In general graphs, this classical problem is known to be NP-hard and hard to approximate within a factor of n1−ε for any ε > 0. Due to this, investigating the complexity of Maximum Independent Set in various graph classes in hope of finding better tractability results is an active research direction. In H-free graphs, that is, graphs not containing a fixed graph H as an induced subgraph, the problem is known to remain NP-hardmore »and APX-hard whenever H contains a cycle, a vertex of degree at least four, or two vertices of degree at least three in one connected component. For the remaining cases, where every component of H is a path or a subdivided claw, the complexity of Maximum Independent Set remains widely open, with only a handful of polynomial-time solvability results for small graphs H such as P5, P6, the claw, or the fork. We prove that for every such “possibly tractable” graph H there exists an algorithm that, given an H-free graph G and an accuracy parameter ε > 0, finds an independent set in G of cardinality within a factor of (1 – ε) of the optimum in time exponential in a polynomial of log | V(G) | and ε−1. That is, we show that for every graph H for which Maximum Independent Set is not known to be APX-hard in H-free graphs, the problem admits a quasi-polynomial time approximation scheme in this graph class. Our algorithm works also in the more general weighted setting, where the input graph is supplied with a weight function on vertices and we are maximizing the total weight of an independent set.« less
  3. We present the first algorithm to morph graphs on the torus. Given two isotopic essentially 3-connected embeddings of the same graph on the Euclidean flat torus, where the edges in both drawings are geodesics, our algorithm computes a continuous deformation from one drawing to the other, such that all edges are geodesics at all times. Previously even the existence of such a morph was not known. Our algorithm runs in O(n1+ω/2) time, where ω is the matrix multiplication exponent, and the computed morph consists of O(n) parallel linear morphing steps. Existing techniques for morphing planar straight-line graphs do not immediatelymore »generalize to graphs on the torus; in particular, Cairns' original 1944 proof and its more recent improvements rely on the fact that every planar graph contains a vertex of degree at most 5. Our proof relies on a subtle geometric analysis of 6-regular triangulations of the torus. We also make heavy use of a natural extension of Tutte's spring embedding theorem to torus graphs.« less
  4. For integers $n\ge 0$, an iterated triangulation $\mathrm{Tr}(n)$ is defined recursively as follows: $\mathrm{Tr}(0)$ is the plane triangulation on three vertices and, for $n\ge 1$, $\mathrm{Tr}(n)$ is the plane triangulation obtained from the plane triangulation $\mathrm{Tr}(n-1)$ by, for each inner face $F$ of $\mathrm{Tr}(n-1)$, adding inside $F$ a new vertex and three edges joining this new vertex to the three vertices incident with $F$. In this paper, we show that there exists a 2-edge-coloring of $\mathrm{Tr}(n)$ such that $\mathrm{Tr}(n)$ contains no monochromatic copy of the cycle $C_k$ for any $k\ge 5$. As a consequence, the answer to one of twomore »questions asked by Axenovich et al. is negative. We also determine the radius 2 graphs $H$ for which there exists $n$ such that every 2-edge-coloring of $\mathrm{Tr}(n)$ contains a monochromatic copy of $H$, extending a result of Axenovich et al. for radius 2 trees.« less
  5. Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing π = f(P), is β-stretch if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p ∈ P and qmore »∈ P , the length of the sub-curve of π connecting f(p) with f(q) is at most β∥f(p) − f(q)∥, where ∥.∥ denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a β-stretch path P connecting s and t. We also output P if it exists. The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerrymandering regions in a map, where edges of G represent natural geographical/political boundaries that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show that the extension is closely related to several studied measures of local fatness of geometric shapes. We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-polynomial time algorithm, that for a given ε > 0, β ∈ O(poly(log |V (G)|)), and s, t ∈ V (G), outputs a β-stretch path between s and t, if a (1 − ε)β-stretch path between s and t exists in the drawing.« less