Detection of differential transcript usage (DTU) from RNA-seq data is an important bioinformatic analysis that complements differential gene expression analysis. Here we present a simple workflow using a set of existing R/Bioconductor packages for analysis of DTU. We show how these packages can be used downstream of RNA-seq quantification using the Salmon software package. The entire pipeline is fast, benefiting from inference steps by Salmon to quantify expression at the transcript level. The workflow includes live, runnable code chunks for analysis using DRIMSeq and DEXSeq, as well as for performing two-stage testing of DTU using the stageR package, a statistical framework to screen at the gene level and then confirm which transcripts within the significant genes show evidence of DTU. We evaluate these packages and other related packages on a simulated dataset with parameters estimated from real data.
more »
« less
Phylogenetic trees
We introduce the package PhylogeneticTrees for Macaulay2, which allows users to compute phylogenetic invariants for group-based tree models. We provide some background information on phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show how methods within the package can be used to compute a generating set for the join of any two ideals.
more »
« less
- Award ID(s):
- 1764406
- PAR ID:
- 10253595
- Date Published:
- Journal Name:
- The journal of software for algebra and geometry
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 1948-7916
- Page Range / eLocation ID:
- 1-7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Birol, Inanc (Ed.)Abstract Motivation Linking microbial community members to their ecological functions is a central goal of environmental microbiology. When assigned taxonomy, amplicon sequences of metabolic marker genes can suggest such links, thereby offering an overview of the phylogenetic structure underpinning particular ecosystem functions. However, inferring microbial taxonomy from metabolic marker gene sequences remains a challenge, particularly for the frequently sequenced nitrogen fixation marker gene, nitrogenase reductase (nifH). Horizontal gene transfer in recent nifH evolutionary history can confound taxonomic inferences drawn from the pairwise identity methods used in existing software. Other methods for inferring taxonomy are not standardized and require manual inspection that is difficult to scale. Results We present Phylogenetic Placement for Inferring Taxonomy (PPIT), an R package that infers microbial taxonomy from nifH amplicons using both phylogenetic and sequence identity approaches. After users place query sequences on a reference nifH gene tree provided by PPIT (n = 6317 full-length nifH sequences), PPIT searches the phylogenetic neighborhood of each query sequence and attempts to infer microbial taxonomy. An inference is drawn only if references in the phylogenetic neighborhood are: (1) taxonomically consistent and (2) share sufficient pairwise identity with the query, thereby avoiding erroneous inferences due to known horizontal gene transfer events. We find that PPIT returns a higher proportion of correct taxonomic inferences than BLAST-based approaches at the cost of fewer total inferences. We demonstrate PPIT on deep-sea sediment and find that Deltaproteobacteria are the most abundant potential diazotrophs. Using this dataset we show that emending PPIT inferences based on visual inspection of query sequence placement can achieve taxonomic inferences for nearly all sequences in a query set. We additionally discuss how users can apply PPIT to the analysis of other marker genes. Availability PPIT is freely available to non-commercial users at https://github.com/bkapili/ppit. Installation includes a vignette that demonstrates package use and reproduces the nifH amplicon analysis discussed here. The raw nifH amplicon sequence data have been deposited in the GenBank, EMBL, and DDBJ databases under BioProject number PRJEB37167. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Crandall, Keith (Ed.)Abstract Viral phylogenies provide crucial information on the spread of infectious diseases, and many studies fit mathematical models to phylogenetic data to estimate epidemiological parameters such as the effective reproduction ratio (Re) over time. Such phylodynamic inferences often complement or even substitute for conventional surveillance data, particularly when sampling is poor or delayed. It remains generally unknown, however, how robust phylodynamic epidemiological inferences are, especially when there is uncertainty regarding pathogen prevalence and sampling intensity. Here, we use recently developed mathematical techniques to fully characterize the information that can possibly be extracted from serially collected viral phylogenetic data, in the context of the commonly used birth-death-sampling model. We show that for any candidate epidemiological scenario, there exists a myriad of alternative, markedly different, and yet plausible “congruent” scenarios that cannot be distinguished using phylogenetic data alone, no matter how large the data set. In the absence of strong constraints or rate priors across the entire study period, neither maximum-likelihood fitting nor Bayesian inference can reliably reconstruct the true epidemiological dynamics from phylogenetic data alone; rather, estimators can only converge to the “congruence class” of the true dynamics. We propose concrete and feasible strategies for making more robust epidemiological inferences from viral phylogenetic data.more » « less
-
Buchin, Kevin and (Ed.)We show how a filtration of Delaunay complexes can be used to approximate the persistence diagram of the distance to a point set in ℝ^d. Whereas the full Delaunay complex can be used to compute this persistence diagram exactly, it may have size O(n^⌈d/2⌉). In contrast, our construction uses only O(n) simplices. The central idea is to connect Delaunay complexes on progressively denser subsamples by considering the flips in an incremental construction as simplices in d+1 dimensions. This approach leads to a very simple and straightforward proof of correctness in geometric terms, because the final filtration is dual to a (d+1)-dimensional Voronoi construction similar to the standard Delaunay filtration. We also, show how this complex can be efficiently constructed.more » « less
-
Fast mvSLOUCH : Multivariate Ornstein–Uhlenbeck‐based models of trait evolution on large phylogeniesAbstract ThePCMBase Rpackage is a powerful computational tool that enables efficient calculations of likelihoods for a wide range of phylogenetic Gaussian models.Taking advantage of it, we redesigned theRpackagemvSLOUCH.Here, we demonstrate how the new version of the package can be used to thoroughly examine the evolution and adaptation of traits in a large dataset of 1252 vascular plants through the use of multivariate Ornstein–Uhlenbeck processes.The results of our analysis demonstrate the ability of the modelling framework to distinguish between various alternative hypotheses regarding the evolution of functional traits in angiosperms.more » « less
An official website of the United States government

