skip to main content


Title: Deep Reinforcement Learning for Delay-Sensitive LTE Downlink Scheduling
We consider an LTE downlink scheduling system where a base station allocates resource blocks (RBs) to users running delay-sensitive applications. We aim to find a scheduling policy that minimizes the queuing delay experienced by the users. We formulate this problem as a Markov Decision Process (MDP) that integrates the channel quality indicator (CQI) of each user in each RB, and queue status of each user. To solve this complex problem involving high dimensional state and action spaces, we propose a Deep Reinforcement Learning based scheduling framework that utilizes the Deep Deterministic Policy Gradient (DDPG) algorithm to minimize the queuing delay experienced by the users. Our extensive experiments demonstrate that our approach outperforms state-of-the-art benchmarks in terms of average throughput, queuing delay, and fairness, achieving up to 55% lower queuing delay than the best benchmark.  more » « less
Award ID(s):
1711335 2032387
NSF-PAR ID:
10253848
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider an energy harvesting sensor transmit- ting latency-sensitive data over a fading channel. We aim to find the optimal transmission scheduling policy that minimizes the packet queuing delay given the available harvested energy. We formulate the problem as a Markov decision process (MDP) over a state-space spanned by the transmitter's buffer, battery, and channel states, and analyze the structural properties of the resulting optimal value function, which quantifies the long-run performance of the optimal scheduling policy. We show that the optimal value function (i) is non- decreasing and has increasing differences in the queue backlog; (ii) is non-increasing and has increasing differences in the battery state; and (iii) is submodular in the buffer and battery states. Our numerical results confirm these properties and demonstrate that the optimal scheduling policy outperforms a so-called greedy policy in terms of sensor outages, buffer overflows, energy efficiency, and queuing delay. 
    more » « less
  2. null (Ed.)
    Abstract: Radio access network (RAN) in 5G is expected to satisfy the stringent delay requirements of a variety of applications. The packet scheduler plays an important role by allocating spectrum resources to user equipments (UEs) at each transmit time interval (TTI). In this paper, we show that optimal scheduling is a challenging combinatorial optimization problem, which is hard to solve within the channel coherence time with conventional optimization methods. Rule-based scheduling methods, on the other hand, are hard to adapt to the time-varying wireless channel conditions and various data request patterns of UEs. Recently, integrating artificial intelligence (AI) into wireless networks has drawn great interest from both academia and industry. In this paper, we incorporate deep reinforcement learning (DRL) into the design of cellular packet scheduling. A delay-aware cell traffic scheduling algorithm is developed to map the observed system state to scheduling decision. Due to the huge state space, a recurrent neural network (RNN) is utilized to approximate the optimal action-policy function. Different from conventional rule-based scheduling methods, the proposed scheme can learn from the interactions with the environment and adaptively choosing the best scheduling decision at each TTI. Simulation results show that the DRL-based packet scheduling can achieve the lowest average delay compared with several conventional approaches. Meanwhile, the UEs' average queue lengths can also be significantly reduced. The developed method also exhibits great potential in real-time scheduling in delay-sensitive scenarios. 
    more » « less
  3. null (Ed.)
    Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed. Distributed computation makes FL attractive for bandwidth limited applications especially in wireless communications. There can be a large number of distributed edge devices connected to a central parameter server (PS) and iteratively download/upload data from/to the PS. Due to limited bandwidth, only a subset of connected devices can be scheduled in each round. There are usually millions of parameters in the state-of-art machine learning models such as deep learning, resulting in a high computation complexity as well as a high communication burden on collecting/distributing data for training. To improve communication efficiency and make the training model converge faster, we propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate under practical constraints during the entire learning process. NOMA allows multiple users to transmit on the same channel simultaneously. The user scheduling problem is transformed into a maximum-weight independent set problem that can be solved using graph theory. Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks than other existing schemes within the same learning time. 
    more » « less
  4. Mobile edge computing pushes computationally-intensive services closer to the user to provide reduced delay due to physical proximity. This has led many to consider deploying deep learning models on the edge – commonly known as edge intelligence (EI). EI services can have many model implementations that provide different QoS. For instance, one model can perform inference faster than another (thus reducing latency) while achieving less accuracy when evaluated. In this paper, we study joint service placement and model scheduling of EI services with the goal to maximize Quality-of-Servcice (QoS) for end users where EI services have multiple implementations to serve user requests, each with varying costs and QoS benefits. We cast the problem as an integer linear program and prove that it is NP-hard. We then prove the objective is equivalent to maximizing a monotone increasing, submodular set function and thus can be solved greedily while maintaining a (1 – 1/e)-approximation guarantee. We then propose two greedy algorithms: one that theoretically guarantees this approximation and another that empirically matches its performance with greater efficiency. Finally, we thoroughly evaluate the proposed algorithm for making placement and scheduling decisions in both synthetic and real-world scenarios against the optimal solution and some baselines. In the real-world case, we consider real machine learning models using the ImageNet 2012 data-set for requests. Our numerical experiments empirically show that our more efficient greedy algorithm is able to approximate the optimal solution with a 0.904 approximation on average, while the next closest baseline achieves a 0.607 approximation on average. 
    more » « less
  5. The large number of antennas in massive MIMO systems allows the base station to communicate with multiple users at the same time and frequency resource with multi-user beamforming. However, highly correlated user channels could drastically impede the spectral efficiency that multi-user beamforming can achieve. As such, it is critical for the base station to schedule a suitable group of users in each time and frequency resource block to achieve maximum spectral efficiency while adhering to fairness constraints among the users. In this paper, we consider the resource scheduling problem for massive MIMO systems with its optimal solution known to be NP-hard. Inspired by recent achievements in deep reinforcement learning (DRL) to solve problems with large action sets, we propose SMART, a dynamic scheduler for massive MIMO based on the state-of-the-art Soft Actor-Critic (SAC) DRL model and the K-Nearest Neighbors (KNN) algorithm. Through comprehensive simulations using realistic massive MIMO channel models as well as real-world datasets from channel measurement experiments, we demonstrate the effectiveness of our proposed model in various channel conditions. Our results show that our proposed model performs very close to the optimal proportionally fair (Opt-PF) scheduler in terms of spectral efficiency and fairness with more than one order of magnitude lower computational complexity in medium network sizes where Opt-PF is computationally feasible. Our results also show the feasibility and high performance of our proposed scheduler in networks with a large number of users and resource blocks. 
    more » « less