skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A throughput optimal scheduling policy for a quantum switch
We study a quantum switch that creates shared end-to-end entangled quantum states to multiple sets of users that are connected to it. Each user is connected to the switch via an optical link across which bipartite Bell-state entangled states are generated in each time-slot with certain probabilities, and the switch merges entanglements of links to create end-to-end entanglements for users. One qubit of an entanglement of a link is stored at the switch and the other qubit of the entanglement is stored at the user corresponding to the link. Assuming that qubits of entanglements of links decipher after one time-slot, we characterize the capacity region, which is defined as the set of arrival rates of requests for end-to-end entanglements for which there exists a scheduling policy that stabilizes the switch. We propose a Max-Weight scheduling policy and show that it stabilizes the switch for all arrival rates that lie in the capacity region. We also provide numerical results to support our analysis.  more » « less
Award ID(s):
1955744
PAR ID:
10343105
Author(s) / Creator(s):
;
Editor(s):
Hemmer, Philip R.; Migdall, Alan L.
Date Published:
Journal Name:
Proceedings Volume 12015, Quantum Computing, Communication, and Simulation II;
Page Range / eLocation ID:
22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum switches are envisioned to be an integral component of future entanglement distribution networks. They can provide high quality entanglement distribution service to end-users by performing quantum operations such as entanglement swapping and entanglement purification. In this work, we characterize the capacity region of such a quantum switch under noisy channel transmissions and imperfect quantum operations. We express the capacity region as a function of the channel and network parameters (link and entanglement swap success probability), entanglement purification yield and application level parameters (target fidelity threshold). In particular, we provide necessary conditions to verify if a set of request rates belong to the capacity region of the switch. We use these conditions to find the maximum achievable end-to-end user entanglement generation throughput by solving a set of linear optimization problems. We develop a max-weight scheduling policy and prove that the policy stabilizes the switch for all feasible request arrival rates. As we develop scheduling policies, we also generate new results for computing the conditional yield distribution of different classes of purification protocols. The conclusions obtained in this work can yield useful guidelines for subsequent quantum switch designs. 
    more » « less
  2. We study a quantum entanglement distribution switch serving a set of users in a star topology with equal-length links. The quantum switch, much like a quantum repeater, can perform entanglement swapping to extend entanglement across longer distances. Additionally, the switch is equipped with entanglement switching logic, enabling it to implement switching policies to better serve the needs of the network. In this work, the function of the switch is to create bipartite or tripartite entangled states among users at the highest possible rates at a fixed ratio. Using Markov chains, we model a set of randomized switching policies. Discovering that some are better than others, we present analytical results for the case where the switch stores one qubit per user, and find that the best policies outperform a time division multiplexing policy for sharing the switch between bipartite and tripartite state generation. This performance improvement decreases as the number of users grows. The model is easily augmented to study the capacity region in the presence of quantum state decoherence and associated cut-off times for qubit storage, obtaining similar results. Moreover, decoherence-associated quantum storage cut-off times appear to have little effect on capacity in our identical-link system. We also study a smaller class of policies when the switch stores two qubits per user. 
    more » « less
  3. In a quantum network that successfully creates links—shared Bell states between neighboring repeater nodes—with probability p in each time slot, and performs Bell State Measurements at nodes with success probability q < 1, the end-to-end entanglement generation rate drops exponentially with the distance between consumers, despite multi-path routing. If repeaters can perform multi-qubit projective measurements in the GHZ basis that succeed with probability q, the rate does not change with distance in a certain (p,q) region, but decays exponentially outside. This region where the distance-independent rate occurs is the super-critical region of a new percolation problem. We extend this GHZ protocol to incorporate a time-multiplexing blocklength k, the number of time slots over which a repeater can mix-and-match successful links to perform fusion on. As k increases, the super-critical region expands. For a given (p,q), the entanglement rate initially increases with k, and once inside the super-critical region for a high enough k, it decays as 1/k GHZ states per time slot. When memory coherence time exponentially distributed with mean μ is incorporated, it is seen that increasing k does not indefinitely increase the super-critical region; it has a hard μ-dependent limit. Finally, we find that incorporating space-division multiplexing, i.e., running the above protocol independently in up to d disconnected network regions, where d is the network’s node degree, one can go beyond the 1 GHZ state per time slot rate that the above randomized local-link-state protocol cannot surpass. As (p,q) increases, one can approach the ultimate min-cut entanglement-generation capacity of d GHZ states per slot. 
    more » « less
  4. We consider the problem of multipath entanglement distribution to a pair of nodes in a quantum network consisting of devices with nondeterministic entanglement swapping capabilities. Multipath entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with preestablished link-level entanglement. Probabilistic entanglement swapping, on the other hand, limits the amount of entanglement that is shared between the nodes; this is especially the case when, due to practical constraints, swaps must be performed in temporal proximity to each other. Limiting our focus to the case where only bipartite entanglement is generated across the network, we cast the problem as an instance of generalized flow maximization between two quantum end nodes wishing to communicate. We propose a mixed-integer quadratically constrained program (MIQCP) to solve this flow problem for networks with arbitrary topology. We then compute the overall network capacity, defined as the maximum number of Einstein–Podolsky–Rosen (EPR) states distributed to users per time unit, by solving the flow problem for all possible network states generated by probabilistic entangled link presence and absence, and subsequently by averaging over all network state capacities. The MIQCP can also be applied to networks with multiplexed links. While our approach for computing the overall network capacity has the undesirable property that the total number of states grows exponentially with link multiplexing capability, it nevertheless yields an exact solution that serves as an upper bound comparison basis for the throughput performance of more easily implementable yet nonoptimal entanglement routing algorithms. 
    more » « less
  5. Abstract We develop a protocol for entanglement generation in the quantum internet that allows a repeater node to usen-qubit Greenberger-Horne-Zeilinger (GHZ) projective measurements that can fusensuccessfully entangledlinks, i.e., two-qubit entangled Bell pairs shared acrossnnetwork edges, incident at that node. Implementingn-fusion, forn ≥ 3, is in principle not much harder than 2-fusions (Bell-basis measurements) in solid-state qubit memories. If we allow even 3-fusions at the nodes, we find—by developing a connection to a modified version of the site-bond percolation problem—that despite lossy (hence probabilistic) link-level entanglement generation, and probabilistic success of the fusion measurements at nodes, one can generate entanglement between end parties Alice and Bob at a rate that stays constant as the distance between them increases. We prove that this powerful network property is not possible to attain with any quantum networking protocol built with Bell measurements and multiplexing alone. We also design a two-party quantum key distribution protocol that converts the entangled states shared between two nodes into a shared secret, at a key generation rate that is independent of the distance between the two parties. 
    more » « less