Abstract Recently, slow molecular dynamics of poly(l‐lactic acid) (PLLA) by using 1D and 2D exchange NMR are investigated. In this work, slow molecular dynamics of PLLA chains in the α′, a stereocomplex (SC) with poly(d‐lactic acid), and glassy states are investigated in terms of centerband‐only detection of exchange (CODEX) NMR. The mixing‐time dependence of the CODEX data demonstrates that the molecular dynamics of stems become slower in the order of α′, α, and SC. The temperature dependence of the correlation time 〈τc〉 of the helical jump motions in the α and SC phases simply exhibits Arrhenius behaviors, with activation energy,Ea, values of 91 ± 1 and 97 ± 1 kJ mol−1, respectively. In contrast, the temperature dependence of 〈τc〉 in the α′ sample exhibits two Arrhenius lines with substantially differentEavalues of 273 ± 12 and 16 ± 14 kJ mol−1at temperatures below and above 84 °C. The obtained kinetics of molecular dynamics not only establish the relationship between packing structure and dynamics in PLLA polymorphs and in the SC, but also allow for an understanding of the coupled dynamics between the crystalline and amorphous regions at approximatelyTg.
more »
« less
Jump-precursor state emerges below the crossover temperature in supercooled o -terphenyl
In a supercooled liquid, the crossover temperature Tc separates a high-temperature region of diffusive dynamics from a low-temperature region of activated dynamics. A molecular-dynamics simulation of all-atom, flexible o-terphenyl [J. Phys. Chem. B 117, 12898 (2013)] is analyzed with advanced statistical methods to reveal the molecular features associated with this crossover. The simulations extend to an α-relaxation time of 14 μs (272.5 K), two-orders of magnitude slower than at Tc (290 K). At Tc and below, a distinct state emerges that immediately precedes an orientational jump. Compared to the initial, tightly caged state, this jump-precursor state has a looser cage, with solid-angular excursions of 0.054–0.0125×4π sr. At Tc (290 K), rate heterogeneity is already the dominant cause of stretched relaxation. Exchange within the distribution of rates is faster than α-relaxation at Tc, but becomes equal to it at the lowest temperature simulated (272.5 K). The results trend toward a recent experimental observation near the glass transition (243 K) [Phys. Rev. E 98, 040603(R) (2018)], which saw exchange substantially slower than α-relaxation. Overall, the dynamic crossover comprises multiple phenomena: the development of heterogeneity, an increasing jump size, an emerging jump-precursor state, and a lengthening exchange time. The crossover is neither sharp, nor a simple superposition of the high- and low-temperature regimes; it is a broad region that contains unique and complex phenomena.
more »
« less
- PAR ID:
- 10254016
- Publisher / Repository:
- journals.aps.org
- Date Published:
- Journal Name:
- Physical review E
- Volume:
- 103
- Issue:
- 5
- ISSN:
- 2470-0053
- Format(s):
- Medium: X Size: 1.3MB Other: pdf/A
- Size(s):
- 1.3MB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The effect of the network-to-molecular structural transformation with increasing phosphorus content in P x Se 100− x (30 ≤ x ≤ 67) supercooled liquids on their shear-mechanical response is investigated using oscillatory shear rheometry. While network liquids with 30 ≤ x ≤ 40 are characterized by shear relaxation via a network bond scission/renewal process, a Maxwell scaling of the storage (G′) and loss (G″) shear moduli, and a frequency-independent viscosity at low frequencies, a new relaxation process emerges in liquids with intermediate compositions (45 ≤ x ≤ 50). This process is attributed to an interconversion between network and molecular structural moieties. Predominantly molecular liquids with x ≥ 63, on the other hand, are characterized by a departure from Maxwell behavior as the storage modulus shows a linear frequency scaling G′(ω) ∼ ω over nearly the entire frequency range below the G′–G″ crossover and a nearly constant ratio of G″/G′ in the terminal region. Moreover, the dynamic viscosity of these rather fragile molecular liquids shows significant enhancement over that of network liquids at frequencies below the dynamical onset and does not reach a frequency-independent regime even at frequencies that are four orders of magnitude lower than that of the onset. Such power-law relaxation behavior of the molecular liquids is ascribed to an extremely broad distribution of relaxation timescales with the coexistence of rapid rotational motion of individual molecules and cooperative dynamics of transient molecular clusters, with the latter being significantly slower than the shear relaxation timescale.more » « less
-
Following nuclear decay, a daughter atom in a solid will "stay in place" if the recoil energy is less than the threshold for displacement. At high temperature, it may subsequently undergo long-range diffusion or some other kind of atomic motion. In this paper, motion of 111Cd tracer probe atoms is reconsidered following electron-capture decay of 111In in the series of In3R phases (R= rare-earth). The motion produces nuclear relaxation that was measured using the method of perturbed angular correlation. Previous measurements along the entire series of In3R phases appeared to show a crossover between two diffusional regimes. While relaxation for R= Lu-Tb is consistent with a simple vacancy diffusion mechanism, relaxation for R= Nd-La is not. More recent measurements in Pd3R phases demonstrate that the site-preference of the parent In-probe changes along the series and suggests that the same behavior occurs for daughter Cd-probes. The anomalous motion observed for R= Nd-La is attributed to "lanthanide expansion" occurring towards La end-member phases. For In3La, the Cd-tracer is found to jump away from its original location on the In-sublattice in an extremely short time, of order 0.5 ns at 1000 K and 1.2 ms at room temperature, a residence time too short to be consistent with defect-mediated diffusion. Several scenarios that can explain the relaxation are presented based on the hypothesis that daughter Cd-probes first jump to neighboring interstitial sites and then are either trapped and immobilized, undergo long-range diffusion, or persist in a localized motion in a cage.more » « less
-
Water dynamics in nanochannels are altered by confinement, particularly in small carbon nanotubes (CNTs). However, the mechanisms behind these effects remain unclear. To address these issues, we carried out extensive molecular dynamics (MD) simulations to investigate the structure and dynamics of water inside CNTs of different sizes (length of 20 nm and diameters vary from 0.8 nm to 5.0 nm) at different temperatures (from 200 K to 420 K). The radial density profile of water inside CNTs shows a single peak near the CNT walls for small nanotubes. For CNTs with larger sizes, water molecules are arranged into coaxial tubular sheets, the number of which increases with the CNT size. Subdiffusive behavior is observed for ultranarrow CNTs with diameters of 0.8 nm and 1 nm. As the size of CNTs increases, Fickian diffusion becomes evident. The hydrogen bond correlation function of water inside CNT decays slower than in bulk water, and the decay rate decreases as we increase the diameter of the CNTs. In large CNTs, the hydrogen bond lifetime of the innermost layer is shorter than the other layers and depends on temperature. Additional analysis of our results reveals that water molecules along the CNT axis show a non-Arrhenius to Arrhenius diffusion crossover. In general, the diffusion transition temperature is higher than that of bulk water, but it depends on the size of the CNT.more » « less
-
The dynamics of polymer melts at the crossover between unentangled and entangled regimes is formalized here through an extension of the Cooperative Dynamics Generalized Langevin Equation (CDGLE) (J. Chem. Phys. 1999, 110, 7574), by including the constraint to the dynamics due to entanglements through an effective intermonomer potential that confines the motion of the chains. As one polymer chain in a melt interpenetrates with a N other chains, with N the degree of chain polymerization, their dynamics is coupled through their potential of mean-force, leading to chains’ cooperative motion and center-of-mass subdiffusive dynamics. When increasing the degree of polymerization, the extended CDGLE approach describes the dynamical behavior of unentangled to weakly entangled systems undergoing cooperative dynamics. By direct comparison of the CDGLE with data of Neutron Spin Echo (NSE) experiments on polyethylene melts, we find that the cooperative dynamics in entangled systems are confined in the region delimited by entanglements. We extend the CDGLE to describe linear dynamical mechanical measurements and use it to calculate shear relaxation for the polyethylene samples investigated by NSE. The effects of cooperative dynamics, local flexibility, and entanglements in the shear relaxation are discussed. It is noteworthy that the theoretical approach describes with accuracy the crossover from unentangled to entangled-global dynamics for polyethylene melts of increasing chain length, covering the regimes of unentangled and weakly entangled (up to 12 entanglements) dynamics in one approach.more » « less
An official website of the United States government

