skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1707813

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In a supercooled liquid, the crossover temperature Tc separates a high-temperature region of diffusive dynamics from a low-temperature region of activated dynamics. A molecular-dynamics simulation of all-atom, flexible o-terphenyl [J. Phys. Chem. B 117, 12898 (2013)] is analyzed with advanced statistical methods to reveal the molecular features associated with this crossover. The simulations extend to an α-relaxation time of 14 μs (272.5 K), two-orders of magnitude slower than at Tc (290 K). At Tc and below, a distinct state emerges that immediately precedes an orientational jump. Compared to the initial, tightly caged state, this jump-precursor state has a looser cage, with solid-angular excursions of 0.054–0.0125×4π sr. At Tc (290 K), rate heterogeneity is already the dominant cause of stretched relaxation. Exchange within the distribution of rates is faster than α-relaxation at Tc, but becomes equal to it at the lowest temperature simulated (272.5 K). The results trend toward a recent experimental observation near the glass transition (243 K) [Phys. Rev. E 98, 040603(R) (2018)], which saw exchange substantially slower than α-relaxation. Overall, the dynamic crossover comprises multiple phenomena: the development of heterogeneity, an increasing jump size, an emerging jump-precursor state, and a lengthening exchange time. The crossover is neither sharp, nor a simple superposition of the high- and low-temperature regimes; it is a broad region that contains unique and complex phenomena. 
    more » « less
  2. The chemical and physical properties of microstructured materials vary with position. The photophysics of solute molecules can measure these local properties, but they often show multiple rates (rate dispersion), which complicates the interpretation. In the case of micelles, rate dispersion in a solute’s anisotropy decay has been assigned to either local anisotropy or heterogeneity in the local viscosity. To resolve this conflict, the rotation of PM597 molecules in SDS micelles has been measured by polarized MUPPETS (multiple population-period transient spectroscopy). This 2D technique shows that heterogeneity is strong and that local anisotropy is minimal. The results suggest that on a subnanosecond timescale, the solute sees only one strong fluctuation of the micelle structure. The anisotropic, average structure only emerges on longer timescales. 
    more » « less