Unusual intermolecular π-stacking in a new charge transfer salt of pyrene (Py), (Py) 2 + (Ga 2 Cl 7 ) − , has been observed. The structure obtained by single crystal X-ray crystallography indicates π-stacks of pyrene which were analyzed using a combination of density functional theory and the analysis of the bond length alternation patterns in the pyrene molecules in different charge states. There are relatively few crystal structures of charge transfer salts of pyrene in the literature, and this structure shows a unique charge separation in which half of the pyrenes are nearly neutral while the other half carry approximately +1 charge in an alternating fashion along the 1D stacks balancing one electron charge transfer to each (Ga 2 Cl 7 ) − anion. The charge localization is attributed to the incomplete inter-pyrene overlap of the singly occupied molecular orbitals.
more »
« less
Superstructural diversity in salt-cocrystals: higher-order hydrogen-bonded assemblies formed using U-shaped dications and with assistance of π − –π stacking
Salt cocrystals with components that assemble by hydrogen bonds and aromatic anion–molecule stacks (π − –π stacks) are reported. U-shaped bipyridines and an isocoumarin carboxylic acid self-assemble to form 5-, 6-, and 10-component aggregates with components in double and quadruple face-to-face stacks. DFT calculations support the π − –π stacks to help stabilize the salt cocrystals.
more »
« less
- Award ID(s):
- 1708673
- PAR ID:
- 10254082
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 56
- Issue:
- 49
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 6708 to 6710
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A series of aromatic organic molecules functionalized with different halogen atoms (I/ Br), motion-capable groups (olefin, azo or imine) and molecular length were designed and synthesized. The molecules self-assemble in the solid state through halogen bonding and exhibit molecular packing sustained by either herringbone or face-to-face π-stacking, two common motifs in organic semiconductor molecules. Interestingly, dynamic pedal motion is only achieved in solids with herringbone packing. On average, solids with herringbone packing exhibit larger thermal expansion within the halogen-bonded sheets due to motion occurrence and molecular twisting, whereas molecules with face-to-face π-stacking do not undergo motion or twisting. Thermal expansion along the π-stacked direction is surprisingly similar, but slightly larger for the face-to-face π-stacked solids due to larger changes in π-stacking distances with temperature changes. The results speak to the importance of crystal packing and intermolecular interaction strength when designing aromatic-based solids for organic electronics applications.more » « less
-
This study expands and combines concepts from two of our earlier studies. One study reported the complementary halogen bonding and π-π charge transfer complexation observed between isomeric electron rich 4-N,N-dimethylaminophenylethynylpyridines and the electron poor halogen bond donor, 1-(3,5-dinitrophenylethynyl)-2,3,5,6-tetrafluoro-4-iodobenzene while the second study elaborated the ditopic halogen bonding of activated pyrimidines. Leveraging our understanding on the combination of these non-covalent interactions, we describe cocrystallization featuring ditopic halogen bonding and π-stacking. Specifically, red cocrystals are formed between the ditopic electron poor halogen bond donor 1-(3,5-dinitrophenylethynyl)-2,4,6-triflouro-3,5-diiodobenzene and each of electron rich pyrimidines 2- and 5-(4-N,N-dimethyl-aminophenylethynyl)pyrimidine. The X-ray single crystal structures of these cocrystals are described in terms of halogen bonding and electron donor-acceptor π-complexation. Computations confirm that the donor-acceptor π-stacking interactions are consistently stronger than the halogen bonding interactions and that there is cooperativity between π-stacking and halogen bonding in the crystals.more » « less
-
The present study evaluates the potential combination of charge-transfer electron-donor–acceptor π–π complexation and C—H hydrogen bonding to form colored cocrystals. The crystal structures of the red 1:1 cocrystals formed from the isomeric pyridines 4- and 3-{2-[4-(dimethylamino)phenyl]ethynyl}pyridine with 1-[2-(3,5-dinitrophenyl)ethynyl]-2,3,5,6-tetrafluorobenzene, both C 14 H 4 F 4 N 2 O 4 ·C 15 H 14 N 2 , are reported. Intermolecular interaction energy calculations confirm that π-stacking interactions dominate the intermolecular interactions within each crystal structure. The close contacts revealed by Hirshfeld surface calculations are predominantly C—H interactions with N, O, and F atoms.more » « less
-
The thermal expansion behavior of a series of halogen-bonded cocrystals containing 1,4-diiodoperchlorobenzene as the donor is described. Two of the solids are polymorphs and contain 4-stilbazole as the acceptor, while the third solid contains 4-(phenylethynyl)pyridine as the acceptor, and this solid is isostructural with one of the polymorphs. All solids are sustained by I···N halogen bonds, and the least thermal expansion occurs along this direction in all solids. The polymorphs exhibit significant differences in π stacking, and we show that electronically similar face-to-face stacked rings undergo more expansion compared to electronically different stacked rings. Moreover, in the two polymorphs, the directions of moderate expansion and most expansion are reversed, demonstrating how cocrystal polymorphism can affect material properties.more » « less
An official website of the United States government

