skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Size‐ and Temperature‐Dependent Suppression of Phonon Thermal Conductivity in Carbon Nanotube Thermoelectric Films
Abstract Heat transport in nanoscale carbon materials such as carbon nanotubes and graphene is normally dominated by phonons. Here, measurements of in‐plane thermal conductivity, electrical conductivity, and thermopower are presented from 77–350 K on two films with thickness <100 nm formed from semiconducting single‐walled carbon nanotubes. These measurements are made with silicon–nitride membrane thermal isolation platforms. The two films, formed from disordered networks of tubes with differing tube and bundle size, have very different thermal conductivity. One film matches a simple model of heat conduction assuming constant phonon velocity and mean free path, and 3D Debye heat capacity with a Debye temperature of 770 K. The second film shows a more complicated temperature dependence, with a dramatic drop in a relatively narrow window near 200 K where phonon contributions to thermal conductivity essentially vanish. This causes a corresponding large increase in thermoelectric figure‐of‐merit at the same temperature. A better understanding of this behavior can allow significant improvement in thermoelectric efficiency of these low‐cost earth‐abundant, organic electronic materials. Heat and charge conductivity near room temperature is also presented as a function of doping, which provides further information on the interaction of dopant molecules and phonon transport in disordered nanotube films.  more » « less
Award ID(s):
1709646
PAR ID:
10254295
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
6
Issue:
11
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Single crystals of the quaternary chalcogenide BaCuGdTe 3 were obtained by direct reaction of elements allowing for a complete investigation of the intrinsic electrical and thermal properties of this previously uninvestigated material. The structure was investigated by high-resolution single-crystal synchrotron X-ray diffraction, revealing an orthorhombic crystal structure with the space group Cmcm. Although recently identified as a semiconductor suitable for thermoelectric applications from theoretical analyses, our electrical resistivity and Seebeck coefficient measurements show metallic conduction, the latter revealing strong phonon-drag. Temperature dependent hole mobility reveals dominant acoustic phonon scattering. Heat capacity data reveal a Debye temperature of 183 K and a very high density of states at the Fermi level, the latter confirming the metallic nature of this composition. Thermal conductivity is relatively high with Umklapp processes dominating thermal transport above the Debye temperature. The findings in this work lay the foundation for a more detailed understanding of the physical properties of this and similar multinary chalcogenide materials, and is part of the continuing effort in investigating quaternary chalcogenide materials and their suitability for use in technological applications. 
    more » « less
  2. Abstract This article attempts to summarize our understanding of heat flow in different solid materials and its relationship to atomistic structure of materials. This knowledge can be used to understand and design materials for electricity generation or cooling through the thermoelectric effect. We start with the fundamentals of heat transport in solids: mechanisms of phonon scattering in crystals, the role of interfaces and coherence, and the relationship between chemical bonding and heat transport will be elucidated. Theories used to model thermal conductivity of solids will be exposed next. They include the Green–Kubo formulation, Boltzmann transport equation and its recent quantum extensions, and Allen–Feldman theory of heat diffusion in noncrystalline solids and its recent extensions. In terms of phenomenology, we will distinguish between the kinetic regime based on independent single carriers and the collective or hydrodynamic one which occurs when normal or momentum-conserving processes dominate. Next, we will focus on advanced measurement and characterization techniques, and the knowledge extracted from them. Nanoscale thermal conductivity methods, such as the pump-probe thermoreflectance methods (TDTR/FDTR), have become fairly common allowing researchers to measure thermal conductivity of thin-film thermoelectrics. We will review recent advances of the method: the Gibbs excess approach, which measures thermal resistance across a grain boundary of polycrystals through mapping TDTR/FDTR measurements, and the transient Raman method, where pump-probe Raman spectroscopy realizes in-plane thermal conductivity measurements of two-dimensional materials even on a substrate. We will also review the progress in mode-resolved phonon property measurements, such as inelastic x-ray scattering for thin-film samples, which allows direct observation of the modulation of phonon band and lifetime by nanostructures, and thermal diffuse scattering for quick characterization of phonon dispersion relations. Finally, because the main focus of this issue is thermoelectrics, we will review different classes of materials and strategies to lower their thermal conductivities. Graphical abstract 
    more » « less
  3. The interplay between magnetism and quantum effects has motivated several thermoelectric studies on iron‐telluride yet with little insight on the anomalous features in transport properties near magnetostructural transition temperature (≈70 K). A detailed investigation is carried out on Fe1.1Te by characterizing magnetic, heat capacity, galvanomagnetic, and thermoelectric transport properties to understand the electronic, magnetic, and structural origin of those anomalies. The magnetic susceptibility indicates a bicollinear stripe and short‐range ordering in the antiferromagnetic and paramagnetic domains, respectively. Hall conductivity and transverse magnetoresistance reveal a multicarrier transport impacted by spin fluctuations and magnons. Contributions from phonon‐drag and magnon‐drag are evaluated to understand the origin of the broad peak in antiferromagnetic thermopower. The peak at ≈50 K and the insignificant entropy contribution from the magnonic heat capacity support the phonon‐drag as the origin. The field‐dependent enhancement of thermal conductivity must be associated with field‐dependent spin‐phonon coupling modification. The field‐induced thermopower reduction can be attributed to the suppression of magnons or paramagnons, as evidenced by the magnetic susceptibility data. Above 70 K, the thermal conductivity drops sharply due to the structural change modifying phonon modes. Understanding these properties originated from the spin, and quantum effects are instrumental for designing high‐performance spin‐driven thermoelectrics. 
    more » « less
  4. null (Ed.)
    Accurate density functional theory calculations of the interrelated properties of thermoelectric materials entail high computational cost, especially as crystal structures increase in complexity and size. New methods involving ab initio scattering and transport (AMSET) and compressive sensing lattice dynamics are used to compute the transport properties of quaternary CaAl 2 Si 2 -type rare-earth phosphides RECuZnP 2 (RE = Pr, Nd, Er), which were identified to be promising thermoelectrics from high-throughput screening of 20 000 disordered compounds. Experimental measurements of the transport properties agree well with the computed values. Compounds with stiff bulk moduli (>80 GPa) and high speeds of sound (>3500 m s −1 ) such as RECuZnP 2 are typically dismissed as thermoelectric materials because they are expected to exhibit high lattice thermal conductivity. However, RECuZnP 2 exhibits not only low electrical resistivity, but also low lattice thermal conductivity (∼1 W m −1 K −1 ). Contrary to prior assumptions, polar-optical phonon scattering was revealed by AMSET to be the primary mechanism limiting the electronic mobility of these compounds, raising questions about existing assumptions of scattering mechanisms in this class of thermoelectric materials. The resulting thermoelectric performance ( zT of 0.5 for ErCuZnP 2 at 800 K) is among the best observed in phosphides and can likely be improved with further optimization. 
    more » « less
  5. Neat, densely packed, and highly aligned carbon nanotube fibers (CNTFs) have appealing room-temperature axial thermal conductivity (k) and thermal diffusivity (α) for applications in lightweight heat spreading, flexible thermal connections, and thermoelectric active cooling. Although CNTFs are regularly produced from different input carbon nanotubes (CNTs), prior work has not quantified how the CNT molecular aspect ratio r (i.e., molecular length-to-diameter ratio) influences k and α in well-aligned, packed CNTFs. Here, we perform self-heated steady-state and three-omega thermal measurements at room temperature on CNTF suspended in vacuum. Our results show that k increases from 150 to 380W/mK for viscosity-averaged molecular aspect ratios increasing from r=960 to 5600 and nanotube diameters of ∼2 nm, which we attribute to the effects of thermal resistances between CNT bundles. CNTFs made with varying volume fraction ϕ of constituent high-r and low-r CNT have properties that fall within or below the typical macroscopic rule-of-mixtures bounds. The thermal diffusivity α scales with k, leading to a sample-averaged volumetric heat capacity of 1.5±0.3MJ/m3K. This work's findings that fibers made from longer CNT have larger k and α at room temperature motivate further investigation into thermal transport in solution-spun CNTF. 
    more » « less