skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Synthesis of Bulky 2,2’‐Bipyridine and ( S )‐Pyridine‐Oxazoline Ligands
Abstract BulkyN,N’‐bidentate ligands can furnish catalysts with enhanced catalytic activity compared to commercially available ligands. Straightforward methods to effectively synthesize a broad range of these ligands, however, are uncommon. In this work, a simple and efficient method is developed for the synthesis of bulkyN,N’‐bidentate ligands, including 2,2’‐bipyridines and enantioenriched pyridine‐oxazolines. The Pd/NIXANTPHOS catalyst system enabled synthesis of a series of bulky 2,2’‐bipyridine‐based ligands and (S)‐pyridine oxazoline‐based enantioenriched ligands with good to excellent yields. The ligands have been benchmarked in the aminofluorination of styrene. magnified image  more » « less
Award ID(s):
1902509
PAR ID:
10254546
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Synthesis & Catalysis
Volume:
363
Issue:
3
ISSN:
1615-4150
Format(s):
Medium: X Size: p. 800-807
Size(s):
p. 800-807
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aiming at the enhanced catalytic activity of fluoro‐λ3‐iodane generated from iodoarene precatalyst with Selectfluor and HF⋅pyridine, this study focused on the λ3‐iodanes bearing coordinating substituents. Compared to 4‐iodoanisole as a precatalyst of our previous method,N‐methyl‐2‐iodobenzamide or 2‐iodobenzamide worked well in the fluorocyclization ofN‐propargyl carboxamides to oxazoles. Control experiments suggest the equilibrium mixture of iodane‐amine complexes and cyclic iodane fluorides would be involved in the present catalysis. magnified image 
    more » « less
  2. Abstract In the last 20 years, efficient transition metal catalysts for the α‐arylation of enolates have been introduced. Despite the popularity and utility of these reactions, there remains room for improvement (reduced costs, elimination of transition metals and specialized ligands). Herein is reported a general, scalable and green method for aroylation of simple diarylmethane pronucleophiles through direct acyl C−N cleavage ofN‐Bn−N‐Boc arylamides andN‐acylpyrroles under transition metal‐free conditions. Importantly, a 1 : 1 ratio of the amide to the pronucleophile is employed. Unlike use of Weinreb amides, this method avoids preformed organometallics (organolithium and Grignard reagents) and does not employ cryogenic temperatures, which are difficult and costly to achieve on scale. The operationally simple protocol provides straightforward access to a variety of sterically and electronically diverse 1,2,2‐triarylethanones, a group of compounds with high‐value in medicinal chemistry. magnified image 
    more » « less
  3. Abstract A Rh(II)/Au(I) catalyzed carbene cascade approach for the stereoselective synthesis of diverse spirocarbocycles is described. The cascade reaction involves a rhodium carbene initiatedsp2C−H functionalization followed by a gold catalyzed Conia‐ene cyclization. The cascade reaction accommodates a variety of aryl substituents as well as ring sizes and proceeds with high diastereoselectivity providing access to diverse spirocarbocycles. magnified image 
    more » « less
  4. Abstract Direct preparation of alkylated amide‐derivatives by cross‐coupling chemistry using sustainable protocols is challenging due to sensitivity of the amide functional group to reaction conditions. Herein, we report the synthesis of alkyl‐substituted amides by iron‐catalyzed C(sp2)−C(sp3) cross‐coupling of Grignard reagents with aryl chlorides. The products of these reactions are broadly used in the synthesis of pharmaceuticals, agrochemicals and other biologically‐active molecules. Furthermore, amides are used as versatile intermediates that can participate in the synthesis of valuable ketones and amines, providing access to motifs of broad synthetic interest. The reaction is characterized by its good substrate scope, tolerating a range of amide substitution, including sterically‐bulky, sensitive and readily modifiable amides. The reaction is compatible with challenging organometallics possessing β‐hydrogens, and proceeds under very mild, operationally‐simple conditions. Optimization of the catalyst system demonstrated the beneficial effect of O‐coordinating ligands on the cross‐coupling. The reaction was found to be fully chemoselective for the mono‐substitution at the less sterically‐hindered position. Mechanistic studies establish the order of reactivity and provide insight into the role of amide to control mono‐selectivity of the alkylation. The protocol provides the possibility for convenient access to alkyl‐amide structural building blocks using sustainable cross‐coupling conditions with high efficiency. magnified image 
    more » « less
  5. Abstract A simple one‐pot synthesis ofβ‐hydroxyallenamides is reported. This procedure entails chemo‐ and regioselective hydroboration of 3‐en‐1‐ynyl‐sulfonylamides with Cy2BH followed by homoallenylation of aldehydes to yield β‐hydroxyallenamides (up to 94% yield and >20:1 dr). Controlled synthesis of up to three continuous stereochemical elements was realized. Density functional theory (DFT) calculations suggest a concerted Zimmerman‐Traxler chair‐like transition state. Initial results suggest that enantio‐ and diastereoselective synthesis of β‐hydroxyallenamides with optically active hydroboration reagents is viable. magnified image 
    more » « less