skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Riparian plant species differ in sensitivity to both the mean and variance in groundwater stores
Abstract Aims Determining the ecological consequences of interactions between slow changes in long-term climate means and amplified variability in climate is an important research frontier in plant ecology. We combined the recent approach of climate sensitivity functions with a revised hydrological ‘bucket model’ to improve predictions on how plant species will respond to changes in the mean and variance of groundwater resources. Methods We leveraged spatiotemporal variation in long-term datasets of riparian vegetation cover and groundwater levels to build the first groundwater sensitivity functions for common plant species of dryland riparian corridors. Our results demonstrate the value of this approach to identifying which plant species will thrive (or fail) in an increasingly variable climate layered with declining groundwater stores. Important Findings Riparian plant species differed in sensitivity to both the mean and variance in groundwater levels. Rio Grande cottonwood (Populus deltoides ssp. wislizenii) cover was predicted to decline with greater inter-annual groundwater variance, while coyote willow (Salix exigua) and other native wetland species were predicted to benefit from greater year-to-year variance. No non-native species were sensitive to groundwater variance, but patterns for Russian olive (Elaeagnus angustifolia) predict declines under deeper mean groundwater tables. Warm air temperatures modulated groundwater sensitivity for cottonwood, which was more sensitive to variability in groundwater in years/sites with warmer maximum temperatures than in cool sites/periods. Cottonwood cover declined most with greater intra-annual coefficients of variation (CV) in groundwater, but was not significantly correlated with inter-annual CV, perhaps due to the short time series (16 years) relative to cottonwood lifespan. In contrast, non-native tamarisk (Tamarix chinensis) cover increased with both intra- and inter-annual CV in groundwater. Altogether, our results predict that changes in groundwater variability and mean will affect riparian plant communities through the differential sensitivities of individual plant species to mean versus variance in groundwater stores.  more » « less
Award ID(s):
1655499
PAR ID:
10255413
Author(s) / Creator(s):
; ;
Editor(s):
Hui, Dafeng
Date Published:
Journal Name:
Journal of Plant Ecology
Volume:
13
Issue:
5
ISSN:
1752-993X
Page Range / eLocation ID:
621 to 632
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Determining the ecological consequences of interactions between slow changes in long-term climate means and amplified variability in climate is an important research frontier in plant ecology. We combined the recent approach of climate sensitivity functions with a revised hydrological ‘bucket model’ to improve predictions on how plant species will respond to future changes in both the mean and variance of groundwater resources. We leveraged spatiotemporal variation in a long-term dataset of riparian vegetation cover to build the first groundwater sensitivity functions (GSFs) for common plant species of dryland riparian corridors. Our results demonstrate the value of this approach to identifying which plant species will thrive (or fail) in an increasingly variable climate layered on top of declining groundwater stores. Riparian plant species differed in sensitivity to both the mean and variance in groundwater levels. Rio Grande cottonwood (Populus deltoides ssp. wislizenii) cover was predicted to decline with greater interannual groundwater variance, while coyote willow (Salix exigua) and other native wetland species were predicted to benefit from greater year-to-year variance. No non-native species were sensitive to groundwater variance, but patterns for Russian olive (Elaeagnus angustifolia) predict declines under deeper mean groundwater tables. Warm air temperatures modulated groundwater sensitivity for cottonwood, which was more sensitive to variability in groundwater in years/sites with warmer maximum temperatures than in cool sites/periods. Cottonwood cover declined most with greater intra-annual coefficients of variation (CV) in groundwater, but was not significantly correlated with inter-annual CV, perhaps due to the relatively short time series (16 y) relative to cottonwood lifespan. In contrast, non-native tamarisk (Tamarix chinensis) cover increased with both intra- and inter-annual CV in groundwater. Altogether, our results predict that changes in groundwater variability and mean will affect riparian plant communities through the differential sensitivities of individual plant species to mean versus variance in groundwater stores. 
    more » « less
  2. Abstract QuestionsPredicting the influence of climate change on riparian plant communities improves management strategies. The sensitivity of riparian vegetation to climate and other abiotic factors depends on interactions between properties of the ecosystem, like flood regime, and plant characteristics. To explore these interactions, we addressed three questions: (a) does the composition and diversity of riparian vegetation vary with the flood regime; (b) do abiotic correlates of vegetation, including climate and groundwater, differ between sites that flood compared to locations that did not experience floods; and (c) which plant functional groups account for differential plant community sensitivity to abiotic factors between flood regimes? LocationMiddle Rio Grande Valley, New Mexico. MethodsWe used long‐term observations of plant community composition, groundwater depth, precipitation and interpolated temperature from 24 sites spanning 210 km of the Rio Grande riparian cottonwood–willow forest to explore the relative importance of climate and hydrologic correlates of riparian vegetation diversity and composition. ResultsRiparian plant diversity was higher at sites flooding compared to non‐flooding sites. Plant diversity positively tracked shallower groundwater depth at flooding sites, but was best predicted by intra‐annual groundwater variability at non‐flooding sites. Plant community composition correlated with groundwater depth and air temperature at all sites, but at non‐flooding sites, also with intra‐annual groundwater variability and precipitation. Relationships between native plant cover and potential environmental drivers diverged strongly between the two flood regimes; non‐native plant cover had only weak relationships with most environmental predictors. ConclusionsThe current flood regime of a site determined the climate and hydrologic factors that best predicted riparian plant community composition and diversity. Relationships between plant diversity or total cover and groundwater, temperature, precipitation, or groundwater variability can change in strength or direction depending on a site's flood history, highlighting the importance of flood regime to predicting the sensitivity of riparian woodlands to future environmental change. 
    more » « less
  3. Dryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro-isotopic analysis of radial growth and seasonal (semi-annual) carbon isotope discrimination (Δ13C) to investigate the response of riparian cottonwood stands to the unprecedented California-wide drought from 2012 to 2019, along the largest remaining free-flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13C) during peak drought years. However, patterns of radial growth and Δ13C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13C for individual trees, and higher inter-correlation of Δ13C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year−1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded 3 m. These findings indicate that drought-induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures. 
    more » « less
  4. Abstract Root production influences carbon and nutrient cycles and subsidizes soil biodiversity. However, the long‐term dynamics and drivers of belowground production are poorly understood for most ecosystems. In drylands, fire, eutrophication, and precipitation regimes could affect not only root production but also how roots track interannual variability in climate.We manipulated the intra‐annual precipitation regime, soil nitrogen, and fire in four common Chihuahuan Desert ecosystem types (three grasslands and one shrubland) in New Mexico, USA, where the 100‐year record indicates both long‐term drying and increasing interannual variability in aridity. First, we evaluated how root production tracked aridity over 10–17 years using climate sensitivity functions, which quantify long‐term, nonlinear relationships between biological processes and climate. Next, we determined the degree to which perturbations by fire, nitrogen addition or intra‐annual rainfall altered the sensitivity of root production to both mean and interannual variability in aridity.All ecosystems had nonlinear climate sensitivities that predicted declines in production with increases in the interannual variance of aridity. However, root production was the most sensitive to aridity in Chihuahuan Desert shrubland, with reduced production under drier and more variable aridity.Among the perturbations, only fire altered the sensitivity of root production to aridity. Root production was more than twice as sensitive to declines with aridity following prescribed fire than in unburned conditions. Neither the intra‐annual seasonal rainfall regime nor chronic nitrogen fertilization altered the sensitivity of roots to aridity.Synthesis. Our results yield new insight into how dryland plant roots respond to climate change. Our comparison of dryland ecosystems of the northern Chihuahuan Desert predicted that root production in shrublands would be more sensitive to future climates that are drier and more variable than root production in dry grasslands. Field manipulations revealed that fire could amplify the climate sensitivity of dry grassland root production, but in contrast, the climate sensitivity of root production was largely resistant to changes in the seasonal rainfall regime or increased soil fertilization. 
    more » « less
  5. Abstract The temporal variability of precipitation and potential evapotranspiration affects streamflow from daily to long‐term scales, but the relative roles of different climate variabilities on streamflow at daily, monthly, annual, and mean annual scales have not been systematically investigated in the literature. This paper developed a new daily water balance model, which provides a unified framework for water balance across timescales. The daily water balance model is driven by four climate forcing scenarios (observed daily climate and observed daily climate with its intra‐monthly, intra‐annual, and inter‐annual variability removed) and applied to 78 catchments. Daily streamflow from the water balance model is aggregated to coarser timescales. The relative roles of intra‐monthly, intra‐annual, and inter‐annual climate variability are evaluated by comparing the modeled streamflow forced with the climate forcings at two consecutive timescales. It is found that daily, monthly, and annual streamflow is primarily controlled by the climate variability at the same timescale. Intra‐monthly climate variability plays a small role in monthly and annual streamflow variability. Intra‐annual climate variability has significant effects on streamflow at all the timescales, and the relative roles of inter‐annual climate variability are also significant to the monthly and mean annual streamflow, which is often disregarded. The quantitative evaluation of the roles of climate variability reveals how climate controls streamflow across timescales. 
    more » « less