The general method of graph coarsening or graph reduction has been a remarkably useful and ubiquitous tool in scientific computing and it is now just starting to have a similar impact in machine learning. The goal of this paper is to take a broad look into coarsening techniques that have been successfully deployed in scientific computing and see how similar principles are finding their way in more recent applications related to machine learning. In scientific computing, coarsening plays a central role in algebraic multigrid methods as well as the related class of multilevel incomplete LU factorizations. In machine learning, graph coarsening goes under various names, e.g., graph downsampling or graph reduction. Its goal in most cases is to replace some original graph by one which has fewer nodes, but whose structure and characteristics are similar to those of the original graph. As will be seen, a common strategy in these methods is to rely on spectral properties to define the coarse graph.
- Award ID(s):
- 1955971
- NSF-PAR ID:
- 10255451
- Date Published:
- Journal Name:
- 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
- Page Range / eLocation ID:
- 213 - 222
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Summary This paper addresses matrix approximation problems for matrices that are large, sparse, and/or representations of large graphs. To tackle these problems, we consider algorithms that are based primarily on coarsening techniques, possibly combined with random sampling. A multilevel coarsening technique is proposed, which utilizes a hypergraph associated with the data matrix and a graph coarsening strategy based on column matching. We consider a number of standard applications of this technique as well as a few new ones. Among standard applications, we first consider the problem of computing
partial singular value decomposition , for which a combination of sampling and coarsening yields significantly improved singular value decomposition results relative to sampling alone. We also consider thecolumn subset selection problem, a popular low‐rank approximation method used in data‐related applications, and show how multilevel coarsening can be adapted for this problem. Similarly, we consider the problem ofgraph sparsification and show how coarsening techniques can be employed to solve it. We also establish theoretical results that characterize the approximation error obtained and the quality of the dimension reduction achieved by a coarsening step, when a proper column matching strategy is employed. Numerical experiments illustrate the performances of the methods in a few applications. -
Abstract In a recent article, one of the authors developed a multigrid technique for coarse‐graining dynamic powergrid models. A key component in this technique is a relaxation‐based coarsening of the graph Laplacian given by the powergrid network and its weighted graph, which is represented by the admittance matrix. In this article, we use this coarsening strategy to develop a multigrid method for solving a static system of nonlinear equations that arises through Ohm's law, the so‐called powerflow equations. These static equations are tightly knitted to the dynamic model in that the full powergrid model is an algebraic‐differential system with the powerflow equations describing the algebraic constraints. We assume that the dynamic model corresponds to a stable operating powergrid, and thus, the powerflow equations are associated with a physically stable system. This stability permits the coarsening of the powerflow equations to be based on an approximate graph Laplacian, which is embedded in the powerflow system. By algebraically constructing a hierarchy of approximate weighted graph Laplacians, a hierarchy of nonlinear powerflow equations immediately becomes apparent. This latter hierarchy can then be used in a full approximation scheme (FAS) framework that leads to a nonlinear solver with generally a larger basin of attraction than Newton's method. Given the algebraic multigrid (AMG) coarsening of the approximate Laplacians, the solver is an AMG‐FAS scheme. Alternatively, using the coarse‐grid nodes and interpolation operators generated for the hierarchy of approximate graph Laplacians, a multiplicative‐correction scheme can be derived. The derivation of both schemes will be presented and analyzed, and numerical examples to demonstrate the performance of these schemes will be given.
-
Abstract We define a novel type of ensemble graph convolutional network (GCN) model. Using optimized linear projection operators to map between spatial scales of graph, this ensemble model learns to aggregate information from each scale for its final prediction. We calculate these linear projection operators as the infima of an objective function relating the structure matrices used for each GCN. Equipped with these projections, our model (a Graph Prolongation-Convolutional Network) outperforms other GCN ensemble models at predicting the potential energy of monomer subunits in a coarse-grained mechanochemical simulation of microtubule bending. We demonstrate these performance gains by measuring an estimate of the Floating Point OPerations spent to train each model, as well as wall-clock time. Because our model learns at multiple scales, it is possible to train at each scale according to a predetermined schedule of coarse vs. fine training. We examine several such schedules adapted from the algebraic multigrid literature, and quantify the computational benefit of each. We also compare this model to another model which features an optimized coarsening of the input graph. Finally, we derive backpropagation rules for the input of our network model with respect to its output, and discuss how our method may be extended to very large graphs.more » « less
-
Existing GPU graph analytics frameworks are typically built from specialized, bottom-up implementations of graph operators that are customized to graph computation. In this work we describe Mini-Gunrock, a lightweight graph analytics framework on the GPU. Unlike existing frameworks, Mini-Gunrock is built from graph operators implemented with generic transform-based data-parallel primitives. Using this method to bridge the gap between programmability and high performance for GPU graph analytics, we demonstrate operator performance on scale-free graphs with an average 1.5x speedup compared to Gunrock's corresponding operator performance. Mini-Gunrock's graph operators, optimizations, and applications code have 10x smaller code size and comparable overall performance vs. Gunrock.more » « less