skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Performance-Portable Graph Coarsening for Efficient Multilevel Graph Analysis
The multilevel heuristic is an effective strategy for speeding up graph analytics, and graph coarsening is an integral step of multilevel methods. We perform a comprehensive study of multilevel coarsening in this work. We primarily focus on the graphics processing unit (GPU) parallelization of the Heavy Edge Coarsening (HEC) method executed in an iterative setting. We present optimizations for the two phases of coarsening, a fine-to-coarse vertex mapping phase, and a coarse graph construction phase. We also express several other coarsening algorithms using the Kokkos framework and discuss their parallelization. We demonstrate the efficacy of parallelized HEC on an NVIDIA Turing GPU and a 32-core AMD Ryzen processor using multilevel spectral graph partitioning as the primary case study.  more » « less
Award ID(s):
1955971
NSF-PAR ID:
10255451
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Page Range / eLocation ID:
213 - 222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The general method of graph coarsening or graph reduction has been a remarkably useful and ubiquitous tool in scientific computing and it is now just starting to have a similar impact in machine learning. The goal of this paper is to take a broad look into coarsening techniques that have been successfully deployed in scientific computing and see how similar principles are finding their way in more recent applications related to machine learning. In scientific computing, coarsening plays a central role in algebraic multigrid methods as well as the related class of multilevel incomplete LU factorizations. In machine learning, graph coarsening goes under various names, e.g., graph downsampling or graph reduction. Its goal in most cases is to replace some original graph by one which has fewer nodes, but whose structure and characteristics are similar to those of the original graph. As will be seen, a common strategy in these methods is to rely on spectral properties to define the coarse graph.

     
    more » « less
  2. Summary

    This paper addresses matrix approximation problems for matrices that are large, sparse, and/or representations of large graphs. To tackle these problems, we consider algorithms that are based primarily on coarsening techniques, possibly combined with random sampling. A multilevel coarsening technique is proposed, which utilizes a hypergraph associated with the data matrix and a graph coarsening strategy based on column matching. We consider a number of standard applications of this technique as well as a few new ones. Among standard applications, we first consider the problem of computingpartial singular value decomposition, for which a combination of sampling and coarsening yields significantly improved singular value decomposition results relative to sampling alone. We also consider thecolumn subset selectionproblem, a popular low‐rank approximation method used in data‐related applications, and show how multilevel coarsening can be adapted for this problem. Similarly, we consider the problem ofgraph sparsificationand show how coarsening techniques can be employed to solve it. We also establish theoretical results that characterize the approximation error obtained and the quality of the dimension reduction achieved by a coarsening step, when a proper column matching strategy is employed. Numerical experiments illustrate the performances of the methods in a few applications.

     
    more » « less
  3. Abstract

    In a recent article, one of the authors developed a multigrid technique for coarse‐graining dynamic powergrid models. A key component in this technique is a relaxation‐based coarsening of the graph Laplacian given by the powergrid network and its weighted graph, which is represented by the admittance matrix. In this article, we use this coarsening strategy to develop a multigrid method for solving a static system of nonlinear equations that arises through Ohm's law, the so‐called powerflow equations. These static equations are tightly knitted to the dynamic model in that the full powergrid model is an algebraic‐differential system with the powerflow equations describing the algebraic constraints. We assume that the dynamic model corresponds to a stable operating powergrid, and thus, the powerflow equations are associated with a physically stable system. This stability permits the coarsening of the powerflow equations to be based on an approximate graph Laplacian, which is embedded in the powerflow system. By algebraically constructing a hierarchy of approximate weighted graph Laplacians, a hierarchy of nonlinear powerflow equations immediately becomes apparent. This latter hierarchy can then be used in a full approximation scheme (FAS) framework that leads to a nonlinear solver with generally a larger basin of attraction than Newton's method. Given the algebraic multigrid (AMG) coarsening of the approximate Laplacians, the solver is an AMG‐FAS scheme. Alternatively, using the coarse‐grid nodes and interpolation operators generated for the hierarchy of approximate graph Laplacians, a multiplicative‐correction scheme can be derived. The derivation of both schemes will be presented and analyzed, and numerical examples to demonstrate the performance of these schemes will be given.

     
    more » « less
  4. Abstract We define a novel type of ensemble graph convolutional network (GCN) model. Using optimized linear projection operators to map between spatial scales of graph, this ensemble model learns to aggregate information from each scale for its final prediction. We calculate these linear projection operators as the infima of an objective function relating the structure matrices used for each GCN. Equipped with these projections, our model (a Graph Prolongation-Convolutional Network) outperforms other GCN ensemble models at predicting the potential energy of monomer subunits in a coarse-grained mechanochemical simulation of microtubule bending. We demonstrate these performance gains by measuring an estimate of the Floating Point OPerations spent to train each model, as well as wall-clock time. Because our model learns at multiple scales, it is possible to train at each scale according to a predetermined schedule of coarse vs. fine training. We examine several such schedules adapted from the algebraic multigrid literature, and quantify the computational benefit of each. We also compare this model to another model which features an optimized coarsening of the input graph. Finally, we derive backpropagation rules for the input of our network model with respect to its output, and discuss how our method may be extended to very large graphs. 
    more » « less
  5. null (Ed.)
    This paper proposes a scalable multilevel framework for the spectral embedding of large undirected graphs. The proposed method first computes much smaller yet sparse graphs while preserving the key spectral (structural) properties of the original graph, by exploiting a nearly-linear time spectral graph coarsening approach. Then, the resultant spectrally-coarsened graphs are leveraged for the development of much faster algorithms for multilevel spectral graph embedding (clustering) as well as visualization of large data sets. We conducted extensive experiments using a variety of large graphs and datasets and obtained very promising results. For instance, we are able to coarsen the "coPapersCiteseer" graph with 0.43 million nodes and 16 million edges into a much smaller graph with only 13K (32X fewer) nodes and 17K (950X fewer) edges in about 16 seconds; the spectrally-coarsened graphs allow us to achieve up to 1,100X speedup for multilevel spectral graph embedding (clustering) and up to 60X speedup for t-SNE visualization of large data sets. 
    more » « less