skip to main content


Title: Supporting Diverse Learners in K-8 Computational Thinking with TIPP&SEE
With the growth of Computer Science (CS) and Computational Thinking (CT) instruction in the primary/elementary domain, it is important that such instruction supports diverse learners. Four categories of students ś students in poverty, multi-lingual students, students with disabilities, and students who have below-grade-level proficiency in reading and math, may face academic challenges that can hinder their learning in CS/CT curricula. However, little is known about how to support these students in CS/CT instruction, especially at this young age. TIPP&SEE, a meta-cognitive strategy that scaffolds learning by proceduralizing engagement through example code, may offer some support. A quasi-experimental study revealed that the gaps between students with and without academic challenges narrowed when using the TIPP&SEE strategy, indicating its promise in providing equitable learning opportunities in CS/CT.  more » « less
Award ID(s):
1660871 1760055
NSF-PAR ID:
10256867
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The 52nd ACM Technical Symposium on Computer Science Education (SIGCSE ’21)
Page Range / eLocation ID:
246 to 252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge. Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys. 
    more » « less
  2. With many school districts nationwide integrating Computer Science (CS) and Computational Thinking (CT) instruction at the K-8 level, it is crucial that CS instruction be e ective for diverse learners. A popular pedagogical approach is Use!Modify!Create, which introduces a concept through a more sca olded, guided instruction before culminating in a more open-ended project for student engagement. Yet, little research has gone into strategies that increase learning during the Use!Modify step. This paper introduces TIPP&SEE, a learning that further sca olds student learning during this step. Results from a quasi-experimental study show statistically-signi cant outperformance from students using the TIPP&SEE strategy on all assessment questions of medium and hard difficulty, suggesting its potential as an e ective CS learning strategy 
    more » « less
  3. null (Ed.)
    Engaging students in science learning that integrates disciplinary knowledge and practices such as computational thinking (CT) is a challenge that may represent unfamiliar territory for many teachers. CompHydro Baltimore is a collaborative partnership aimed at enacting Next Generation Science Standards (NGSS)–aligned instruction to support students in developing knowledge and practice reflective of the goals laid out in A Framework for K–12 Science Education (National Research Council 2012) “... that by the end of 12th grade, all students possess sufficient knowledge of science and engineering to engage in public discussion on related issues … and are careful consumers of scientific and technological information related to their everyday lives.” This article presents the results of a partnership that generated a new high school level curriculum and teacher professional development program that tackled the challenge of integrating hydrologic learning with computational thinking as applied to a real-world issue of flooding. CompHydro Baltimore produced Baltimore Floods, a six-lesson high school unit that builds students’ water literacy by engaging them in computational thinking (CT) and modeling practices as they learn about water system processes involved in urban flooding (See Computational Thinking and Associated Science Practices). CompHydro demonstrates that broad partnerships can address these challenges, bringing together the diverse expertise necessary to develop innovative CT-infused science curriculum materials and the teacher supports needed for successful implementation. 
    more » « less
  4. null (Ed.)
    Bridge courses are often created to provide participants with remediation instruction on discipline-specific content knowledge, like chemistry and mathematics, before enrollment in regular (semester-long) courses. The bridge courses are then designed to impact student’s academic success in the short-term. Also, as a consequence of the bridge course experience, it is often expected that students’ dropout rates on those regular courses will decrease. However, the bridge courses are often short (ten or fewer days) and packed with content, thus creating challenges for helping students sustain their learning gains over time. With the support of the NSF funded (DUE - Division Of Undergraduate Education) STEM Center at Sam Houston State University, we are designing a course for entering chemistry students that consists of a one-week pre-semester intensive bridge component, which then flows into a one-month co-curricular support component at the beginning of the semester. The primary goals of the bridge component of the course are to strengthen student academic preparedness, calibrated-self-efficacy, and to foster networking leading to a strong learning community. The goal of the co-curricular extension is to help students sustain and build upon the learning gains of the initial bridge component. We plan to extend the co-curricular portion of the course in future years. A key measure of success will be improved participant course grades in the introductory chemistry courses for majors. Our design process has been centered on weekly meetings that alternate between literature review and course design. The design process was initiated with backward design principles and continues with ongoing revision. The goals, design strategy, and design process of this new course will be presented along with the achieved student outcomes during the implementation of the past summer 2020. 
    more » « less
  5. null (Ed.)
    Bridge courses are often created to provide participants with remediation instruction on discipline-specific content knowledge, like chemistry and mathematics, before enrollment in regular (semester-long) courses. The bridge courses are then designed to impact student’s academic success in the short-term. Also, as a consequence of the bridge course experience, it is often expected that students’ dropout rates on those regular courses will decrease. However, the bridge courses are often short (ten or fewer days) and packed with content, thus creating challenges for helping students sustain their learning gains over time. With the support of the NSF funded (DUE - Division Of Undergraduate Education) STEM Center at Sam Houston State University, we are designing a course for entering chemistry students that consists of a one-week pre-semester intensive bridge component, which then flows into a one-month co-curricular support component at the beginning of the semester. The primary goals of the bridge component of the course are to strengthen student academic preparedness, calibrated-self-efficacy, and to foster networking leading to a strong learning community. The goal of the co-curricular extension is to help students sustain and build upon the learning gains of the initial bridge component. We plan to extend the co-curricular portion of the course in future years. A key measure of success will be improved participant course grades in the introductory chemistry courses for majors. Our design process has been centered on weekly meetings that alternate between literature review and course design. The design process was initiated with backward design principles and continues with ongoing revision. The goals, design strategy, and design process of this new course will be presented along with the achieved student outcomes during the implementation of the past summer 2020. 
    more » « less