We investigate the sensitivity to the effects of lensing magnification on largescale structure analyses combining photometric cosmic shear and galaxy clustering data (i.e. the now commonly called ‘3 × 2point’ analysis). Using a Fisher matrix bias formalism, we disentangle the contribution to the bias on cosmological parameters caused by ignoring the effects of magnification in a theory fit from individual elements in the data vector, for StageIII and StageIV surveys. We show that the removal of elements of the data vectors that are dominated by magnification does not guarantee a reduction in the cosmological bias due to the magnification signal, butmore »
Cosmological constraints from cosmic shear twopoint correlation functions with HSC survey firstyear data
Abstract We present measurements of cosmic shear twopoint correlation functions (TPCFs) from Hyper SuprimeCam Subaru Strategic Program (HSC) firstyear data, and derive cosmological constraints based on a blind analysis. The HSC firstyear shape catalog is divided into four tomographic redshift bins ranging from $z=0.3$ to 1.5 with equal widths of $\Delta z =0.3$. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and $2.4\:$arcmin$^{2}$ from the lowest to highest redshifts, respectively. We adopt the standard TPCF estimators, $\xi _\pm$, for our cosmological analysis, given that we find no evidence of significant Bmode shear. The TPCFs are detected at high significance for all 10 combinations of auto and crosstomographic bins over a wide angular range, yielding a total signaltonoise ratio of 19 in the angular ranges adopted in the cosmological analysis, $7^{\prime }<\theta <56^{\prime }$ for $\xi _+$ and $28^{\prime }<\theta <178^{\prime }$ for $\xi _$. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructed more »
 Award ID(s):
 1638509
 Publication Date:
 NSFPAR ID:
 10256994
 Journal Name:
 Publications of the Astronomical Society of Japan
 Volume:
 72
 Issue:
 1
 ISSN:
 00046264
 Sponsoring Org:
 National Science Foundation
More Like this

ABSTRACT 
ABSTRACT We present cosmological parameter constraints based on a joint modelling of galaxy–lensing crosscorrelations and galaxy clustering measurements in the SDSS, marginalizing over smallscale modelling uncertainties using mock galaxy catalogues, without explicit modelling of galaxy bias. We show that our modelling method is robust to the impact of different choices for how galaxies occupy dark matter haloes and to the impact of baryonic physics (at the $\sim 2{{\ \rm per\ cent}}$ level in cosmological parameters) and test for the impact of covariance on the likelihood analysis and of the survey window function on the theory computations. Applying our results tomore »

Abstract We use luminous red galaxies selected from the imaging surveys that are being used for targeting by the Dark Energy Spectroscopic Instrument (DESI) in combination with CMB lensing maps from the Planck collaboration to probe the amplitude of largescale structure over 0.4 ≤ z ≤ 1. Our galaxy sample, with an angular number density of approximately 500 deg 2 over 18,000 sq.deg., is divided into 4 tomographic bins by photometric redshift and the redshift distributions are calibrated using spectroscopy from DESI. We fit the galaxy autospectra and galaxyconvergence crossspectra using models based on cosmological perturbation theory, restricting to large scales thatmore »

Abstract Modifications of the matter power spectrum due to baryonic physics are one of the major theoretical uncertainties in cosmological weak lensing measurements. Developing robust mitigation schemes for this source of systematic uncertainty increases the robustness of cosmological constraints, and may increase their precision if they enable the use of information from smaller scales. Here we explore the performance of two mitigation schemes for baryonic effects in weak lensing cosmic shear: the principal component analysis (PCA) method and the halomodel approach in hmcode. We construct mock tomographic shear power spectra from four hydrodynamical simulations, and run simulated likelihood analyses withmore »

ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into starforming or quiescent classes based on their restframe UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and massmore »