skip to main content


Title: Cosmology from weak lensing peaks and minima with Subaru Hyper Suprime-Cam Survey first-year data
ABSTRACT

We present cosmological constraints derived from peak counts, minimum counts, and the angular power spectrum of the Subaru Hyper Suprime-Cam first-year (HSC Y1) weak lensing shear catalogue. Weak lensing peak and minimum counts contain non-Gaussian information and hence are complementary to the conventional two-point statistics in constraining cosmology. In this work, we forward-model the three summary statistics and their dependence on cosmology, using a suite of N-body simulations tailored to the HSC Y1 data. We investigate systematic and astrophysical effects including intrinsic alignments, baryon feedback, multiplicative bias, and photometric redshift uncertainties. We mitigate the impact of these systematics by applying cuts on angular scales, smoothing scales, signal-to-noise ratio bins, and tomographic redshift bins. By combining peaks, minima, and the power spectrum, assuming a flat-ΛCDM model, we obtain $S_{8} \equiv \sigma _8\sqrt{\Omega _m/0.3}= 0.810^{+0.022}_{-0.026}$, a 35 per cent tighter constraint than that obtained from the angular power spectrum alone. Our results are in agreement with other studies using HSC weak lensing shear data, as well as with Planck 2018 cosmology and recent CMB lensing constraints from the Atacama Cosmology Telescope and the South Pole Telescope.

 
more » « less
Award ID(s):
1815887
NSF-PAR ID:
10490286
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
528
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4513-4527
Size(s):
["p. 4513-4527"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present cosmological constraints from the Subaru Hyper Suprime-Cam (HSC) first-year weak lensing shear catalogue using convolutional neural networks (CNNs) and conventional summary statistics. We crop 19 $3\times 3\, \mathrm{{deg}^2}$ sub-fields from the first-year area, divide the galaxies with redshift 0.3 ≤ z ≤ 1.5 into four equally spaced redshift bins, and perform tomographic analyses. We develop a pipeline to generate simulated convergence maps from cosmological N-body simulations, where we account for effects such as intrinsic alignments (IAs), baryons, photometric redshift errors, and point spread function errors, to match characteristics of the real catalogue. We train CNNs that can predict the underlying parameters from the simulated maps, and we use them to construct likelihood functions for Bayesian analyses. In the Λ cold dark matter model with two free cosmological parameters Ωm and σ8, we find $\Omega _\mathrm{m}=0.278_{-0.035}^{+0.037}$, $S_8\equiv (\Omega _\mathrm{m}/0.3)^{0.5}\sigma _{8}=0.793_{-0.018}^{+0.017}$, and the IA amplitude $A_\mathrm{IA}=0.20_{-0.58}^{+0.55}$. In a model with four additional free baryonic parameters, we find $\Omega _\mathrm{m}=0.268_{-0.036}^{+0.040}$, $S_8=0.819_{-0.024}^{+0.034}$, and $A_\mathrm{IA}=-0.16_{-0.58}^{+0.59}$, with the baryonic parameters not being well-constrained. We also find that statistical uncertainties of the parameters by the CNNs are smaller than those from the power spectrum (5–24 per cent smaller for S8 and a factor of 2.5–3.0 smaller for Ωm), showing the effectiveness of CNNs for uncovering additional cosmological information from the HSC data. With baryons, the S8 discrepancy between HSC first-year data and Planck 2018 is reduced from $\sim 2.2\, \sigma$ to $0.3\!-\!0.5\, \sigma$.

     
    more » « less
  2. ABSTRACT We constrain the matter density Ωm and the amplitude of density fluctuations σ8 within the ΛCDM cosmological model with shear peak statistics and angular convergence power spectra using mass maps constructed from the first three years of data of the Dark Energy Survey (DES Y3). We use tomographic shear peak statistics, including cross-peaks: peak counts calculated on maps created by taking a harmonic space product of the convergence of two tomographic redshift bins. Our analysis follows a forward-modelling scheme to create a likelihood of these statistics using N-body simulations, using a Gaussian process emulator. We take into account the uncertainty from the remaining, largely unconstrained ΛCDM parameters (Ωb, ns, and h). We include the following lensing systematics: multiplicative shear bias, photometric redshift uncertainty, and galaxy intrinsic alignment. Stringent scale cuts are applied to avoid biases from unmodelled baryonic physics. We find that the additional non-Gaussian information leads to a tightening of the constraints on the structure growth parameter yielding $S_8~\equiv ~\sigma _8\sqrt{\Omega _{\mathrm{m}}/0.3}~=~0.797_{-0.013}^{+0.015}$ (68 per cent confidence limits), with a precision of 1.8 per cent, an improvement of 38 per cent compared to the angular power spectra only case. The results obtained with the angular power spectra and peak counts are found to be in agreement with each other and no significant difference in S8 is recorded. We find a mild tension of $1.5 \, \sigma$ between our study and the results from Planck 2018, with our analysis yielding a lower S8. Furthermore, we observe that the combination of angular power spectra and tomographic peak counts breaks the degeneracy between galaxy intrinsic alignment AIA and S8, improving cosmological constraints. We run a suite of tests concluding that our results are robust and consistent with the results from other studies using DES Y3 data. 
    more » « less
  3. ABSTRACT

    We evaluate the consistency between lensing and clustering based on measurements from Baryon Oscillation Spectroscopic Survey combined with galaxy–galaxy lensing from Dark Energy Survey (DES) Year 3, Hyper Suprime-Cam Subaru Strategic Program (HSC) Year 1, and Kilo-Degree Survey (KiDS)-1000. We find good agreement between these lensing data sets. We model the observations using the Dark Emulator and fit the data at two fixed cosmologies: Planck (S8 = 0.83), and a Lensing cosmology (S8 = 0.76). For a joint analysis limited to large scales, we find that both cosmologies provide an acceptable fit to the data. Full utilization of the higher signal-to-noise small-scale measurements is hindered by uncertainty in the impact of baryon feedback and assembly bias, which we account for with a reasoned theoretical error budget. We incorporate a systematic inconsistency parameter for each redshift bin, A, that decouples the lensing and clustering. With a wide range of scales, we find different results for the consistency between the two cosmologies. Limiting the analysis to the bins for which the impact of the lens sample selection is expected to be minimal, for the Lensing cosmology, the measurements are consistent with A = 1; A = 0.91 ± 0.04 (A = 0.97 ± 0.06) using DES+KiDS (HSC). For the Planck case, we find a discrepancy: A = 0.79 ± 0.03 (A = 0.84 ± 0.05) using DES+KiDS (HSC). We demonstrate that a kinematic Sunyaev–Zeldovich-based estimate for baryonic effects alleviates some of the discrepancy in the Planck cosmology. This analysis demonstrates the statistical power of small-scale measurements; however, caution is still warranted given modelling uncertainties and foreground sample selection effects.

     
    more » « less
  4. ABSTRACT

    Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT.

     
    more » « less
  5. Abstract

    In this follow-up analysis, we update previous constraints on the transitional Planck mass (TPM) modified gravity model using the latest version of EFTCAMB and provide new constraints using South Pole Telescope (SPT) and Planck anisotropy data along with Planck cosmic microwave background lensing, baryon acoustic oscillations, and Type Ia supernovae data and a Hubble constant,H0, prior from local measurements. We find that large shifts in the Planck mass lead to large suppression of power on small scales that is disfavored by both the SPT and Planck data. Using only the SPT temperature-polarization–polarization-polarization (TE-EE) data, this suppression of power can be compensated for by an upward shift of the scalar index tons= 1.003 ± 0.016, resulting inH0=71.940.85+0.86km m−1Mpc−1and a ∼7% shift in the Planck mass. Including the Planck temperature-temperature (TT) ≤ 650 and Planck TE-EE data restricts the shift to be <5% at 2σwithH0= 70.65 ± 0.66 km m−1Mpc−1. Excluding theH0prior, the SPT and Planck data constrain the shift in the Planck mass to be <3% at 2σwith a best-fit value of 0.04%, consistent with the Λ cold dark matter limit. In this caseH0=69.090.68+0.69km s−1Mpc−1, which is partially elevated by the dynamics of the scalar field in the late Universe. This differs from early dark energy models that prefer higher values ofH0when the high-Planck TT data are excluded. We additionally constrain TPM using redshift space distortion data from BOSS DR12 and cosmic shear, galaxy–galaxy lensing, and galaxy clustering data from DES Y1, finding both disfavor transitions close to recombination, but earlier Planck mass transitions are allowed.

     
    more » « less