skip to main content

Title: Reconstruction of Charged Particle Tracks in Realistic Detector Geometry Using a Vectorized and Parallelized Kalman Filter Algorithm
One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is finding and fitting particle tracks during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filterbased methods for highly parallel, many-core SIMD and SIMT architectures that are now prevalent in high-performance hardware. Previously we observed significant parallel speedups, with physics performance comparable to CMS standard tracking, on Intel Xeon, Intel Xeon Phi, and (to a limited extent) NVIDIA GPUs. While early tests were based on artificial events occurring inside an idealized barrel detector, we showed subsequently that our mkFit software builds tracks successfully from complex simulated events (including detector pileup) occurring inside a geometrically accurate representation of the CMS-2017 tracker. Here, we report on advances in both the computational and physics performance of mkFit, as well as progress toward integration with CMS production software. Recently we have improved the overall efficiency of the algorithm by preserving short track candidates at a relatively early stage rather than attempting to extend them over many layers. Moreover, mkFit formerly produced an excess of duplicate tracks; these are now explicitly removed in an additional processing step. We demonstrate that with these enhancements, mkFit becomes a suitable choice for the first iteration of CMS tracking, and eventually for later iterations as well. We plan to test this capability in the CMS High Level Trigger during Run 3 of the LHC, with an ultimate goal of using it in both the CMS HLT and offline reconstruction for the HL-LHC CMS tracker.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W.
Date Published:
Journal Name:
EPJ Web of Conferences
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The major challenge posed by the high instantaneous luminosity in the High Luminosity LHC (HL-LHC) motivates efficient and fast reconstruction of charged particle tracks in a high pile-up environment. While there have been efforts to use modern techniques like vectorization to improve the existing classic Kalman Filter based reconstruction algorithms, we take a fundamentally different approach by doing a bottom-up reconstruction of tracks. Our algorithm, called Line Segment Tracking, constructs small track stubs from adjoining detector regions, and then successively links these track stubs that are consistent with typical track trajectories. Since the production of these track stubs is localized, they can be made in parallel, which lends way into using architectures like GPUs and multi-CPUs to take advantage of the parallelism. We establish an implementation of our algorithm in the context of the CMS Phase-2 Tracker which runs on NVIDIA Tesla V100 GPUs, and measure the physics performance and the computing time. 
    more » « less
  2. Abstract The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) will produce particle collisions with up to 200 simultaneous proton-proton interactions. These unprecedented conditions will create a combinatorial complexity for charged-particle track reconstruction that demands a computational cost that is expected to surpass the projected computing budget using conventional CPUs. Motivated by this and taking into account the prevalence of heterogeneous computing in cutting-edge High Performance Computing centers, we propose an efficient, fast and highly parallelizable bottom-up approach to track reconstruction for the HL-LHC, along with an associated implementation on GPUs, in the context of the Phase 2 CMS outer tracker. Our algorithm, called Segment Linking (or Line Segment Tracking), takes advantage of localized track stub creation, combining individual stubs to progressively form higher level objects that are subject to kinematical and geometrical requirements compatible with genuine physics tracks. The local nature of the algorithm makes it ideal for parallelization under the Single Instruction, Multiple Data paradigm, as hundreds of objects can be built simultaneously. The computing and physics performance of the algorithm has been tested on an NVIDIA Tesla V100 GPU, already yielding efficiency and timing measurements that are on par with the latest, multi-CPU versions of existing CMS tracking algorithms. 
    more » « less
  3. Abstract The reconstruction of the trajectories of charged particles, or track reconstruction, is a key computational challenge for particle and nuclear physics experiments. While the tuning of track reconstruction algorithms can depend strongly on details of the detector geometry, the algorithms currently in use by experiments share many common features. At the same time, the intense environment of the High-Luminosity LHC accelerator and other future experiments is expected to put even greater computational stress on track reconstruction software, motivating the development of more performant algorithms. We present here A Common Tracking Software (ACTS) toolkit, which draws on the experience with track reconstruction algorithms in the ATLAS experiment and presents them in an experiment-independent and framework-independent toolkit. It provides a set of high-level track reconstruction tools which are agnostic to the details of the detection technologies and magnetic field configuration and tested for strict thread-safety to support multi-threaded event processing. We discuss the conceptual design and technical implementation of ACTS, selected applications and performance of ACTS, and the lessons learned. 
    more » « less
  4. Abstract The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×10 34 cm -2 s -1 . This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb -1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment. 
    more » « less
  5. The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase of the LHC (HL-LHC). Graph neural networks (GNNs) are a type of geometric deep learning algorithm that has successfully been applied to this task by embedding tracker data as a graph—nodes represent hits, while edges represent possible track segments—and classifying the edges as true or fake track segments. However, their study in hardware- or software-based trigger applications has been limited due to their large computational cost. In this paper, we introduce an automated translation workflow, integrated into a broader tool called hls4ml , for converting GNNs into firmware for field-programmable gate arrays (FPGAs). We use this translation tool to implement GNNs for charged particle tracking, trained using the TrackML challenge dataset, on FPGAs with designs targeting different graph sizes, task complexites, and latency/throughput requirements. This work could enable the inclusion of charged particle tracking GNNs at the trigger level for HL-LHC experiments. 
    more » « less