skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: EEG hyperscanning in motor rehabilitation: a position paper
Abstract Studying the human brain during interpersonal interaction allows us to answer many questions related to motor control and cognition. For instance, what happens in the brain when two people walking side by side begin to change their gait and match cadences? Adapted from the neuroimaging techniques used in single-brain measurements, hyperscanning (HS) is a technique used to measure brain activity from two or more individuals simultaneously. Thus far, HS has primarily focused on healthy participants during social interactions in order to characterize inter-brain dynamics. Here, we advocate for expanding the use of this electroencephalography hyperscanning (EEG-HS) technique to rehabilitation paradigms in individuals with neurological diagnoses, namely stroke, spinal cord injury (SCI), Parkinson’s disease (PD), and traumatic brain injury (TBI). We claim that EEG-HS in patient populations with impaired motor function is particularly relevant and could provide additional insight on neural dynamics, optimizing rehabilitation strategies for each individual patient. In addition, we discuss future technologies related to EEG-HS that could be developed for use in the clinic as well as technical limitations to be considered in these proposed settings.  more » « less
Award ID(s):
2024488
PAR ID:
10257060
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Volume:
18
Issue:
1
ISSN:
1743-0003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motor impairments caused by stroke significantly affect daily activities and reduce quality of life, highlighting the need for effective rehabilitation strategies. This study presents a novel approach to classifying motor tasks using EEG data from acute stroke patients, focusing on left-hand motor imagery, right-hand motor imagery, and rest states. By using advanced source localization techniques, such as Minimum Norm Estimation (MNE), dipole fitting, and beamforming, integrated with a customized Residual Convolutional Neural Network (ResNetCNN) architecture, we achieved superior spatial pattern recognition in EEG data. Our approach yielded classification accuracies of 91.03% with dipole fitting, 89.07% with MNE, and 87.17% with beamforming, markedly surpassing the 55.57% to 72.21% range of traditional sensor domain methods. These results highlight the efficacy of transitioning from sensor to source domain in capturing precise brain activity. The enhanced accuracy and reliability of our method hold significant potential for advancing brain–computer interfaces (BCIs) in neurorehabilitation. This study emphasizes the importance of using advanced EEG classification techniques to provide clinicians with precise tools for developing individualized therapy plans, potentially leading to substantial improvements in motor function recovery and overall patient outcomes. Future work will focus on integrating these techniques into practical BCI systems and assessing their long-term impact on stroke rehabilitation. 
    more » « less
  2. Studying electroencephalography (EEG) in response to transcranial magnetic stimulation (TMS) is gaining popularity for investigating the dynamics of complex neural architecture in the brain. For example, the primary motor cortex (M1) executes voluntary movements by complex connections with other associated subnetworks. To understand these connections better, we analyzed EEG signal response to TMS at left M1 from schizophrenia patients and healthy controls and in contrast with resting state EEG recording. After removing artifacts from EEG, we conducted 2D to 3D sLORETA conversion, a well-established source localization method, for estimating signal strength of 68 source dipoles or cortical regions inside the brain. Next, we studied dynamic connectivity by computing time-evolving spatial coherence of 2278 (=68*(68-1)/2) pairs of cortical regions, with sliding window technique of 200ms window size and 20ms shift over 1sec long data. Pairs with consistent coherence (coherence>0.8 during 200+ sliding windows of patients and controls combined) were chosen for identifying stable networks. For example, we found that during the resting state, precuneus was steadily coherent with middle and superior temporal gyrus in the left hemisphere in both patient and controls. Their connectivity pattern over the sliding windows significantly differed between patients and controls (pvalue<0.05). Whereas for M1, the same was true for two other coherent pairs namely, superamarginal gyrus with lateral occipital gyrus in right hemisphere and medial orbitofrontal gyrus with fusiform in left hemisphere. The TMS-EEG dynamic connectivity results can help to differentiate patient and normal subjects and also help to better understand the brain architecture and mechanisms. 
    more » « less
  3. Ahram, Tareq Z; Falcão, Christianne S. (Ed.)
    Mobile brain-body imaging (MoBI) technology allows the study of the brain in action and the context of complex natural settings. MoBI devices are wearable devices that typically record the scalp electroencephalogram (EEG) and head motion of the user. MoBI systems have applications in neuroscience, rehabilitation, design, and other applications. Here, we propose design principles for MoBI systems for use in brain-machine interfaces for rehabilitation by individuals with movement disabilities. This design study discusses the validity of the process of utilizing 3D anthropometric data as a basis to design a MoBI headset for an optimized fit and ergonomics. The study also discusses the need for ensuring that EEG sensors keep constant contact with the scalp and face for the best scan quality. Moreover, the need for singlehanded correct positioning of the headset is discussed to address disabilities in the older populations and clinical populations with motor impairments. 
    more » « less
  4. Motor impairments resulting from neurological disorders, such as strokes or spinal cord injuries, often impair hand and finger mobility, restricting a person’s ability to grasp and perform fine motor tasks. Brain plasticity refers to the inherent capability of the central nervous system to functionally and structurally reorganize itself in response to stimulation, which underpins rehabilitation from brain injuries or strokes. Linking voluntary cortical activity with corresponding motor execution has been identified as effective in promoting adaptive plasticity. This study introduces NeuroFlex, a motion-intent-controlled soft robotic glove for hand rehabilitation. NeuroFlex utilizes a transformer-based deep learning (DL) architecture to decode motion intent from motor imagery (MI) EEG data and translate it into control inputs for the assistive glove. The glove’s soft, lightweight, and flexible design enables users to perform rehabilitation exercises involving fist formation and grasping movements, aligning with natural hand functions for fine motor practices. The results show that the accuracy of decoding the intent of fingers making a fist from MI EEG can reach up to 85.3%, with an average AUC of 0.88. NeuroFlex demonstrates the feasibility of detecting and assisting the patient’s attempted movements using pure thinking through a non-intrusive brain–computer interface (BCI). This EEG-based soft glove aims to enhance the effectiveness and user experience of rehabilitation protocols, providing the possibility of extending therapeutic opportunities outside clinical settings. 
    more » « less
  5. High-definition transcranial direct current stimulation (HD-tDCS) is a promising approach for stroke rehabilitation, which may induce functional changes in the cortical sensorimotor areas to facilitate movement recovery. However, it lacks an objective measure that can indicate the effect of HD-tDCS on alteration of brain activity. Quantitative electroencephalography (qEEG) has shown promising results as an indicator of post-stroke functional recovery. Therefore, this study aims to determine whether qEEG metrics could serve as quantitative measures to assess alteration in brain activity induced by HD-tDCS. Resting state EEG was collected from stroke participants before and after (1) anodal HD-tDCS of the lesioned hemisphere, (2) cathodal stimulation of the non-lesioned hemisphere, and (3) sham. The average power spectrum was calculated using the Fast Fourier Transform for frequency bands alpha, beta, delta, and theta. In addition, delta-alpha ratio (DAR), Delta-alpha-beta-theta ratio (DTABR), and directional brain symmetry index (BSI) were also evaluated. We found that both anodal and cathodal stimulation significantly decreased the DAR and BSI over various frequency bands, which are associated with reduced motor impairments and improved nerve conduction velocity from the brain to muscles. This result indicates that qEEG metrics DAR and BSI could be quantitative indicators to assess alteration of brain activity induced by HD-tDCS in stroke rehabilitation. This would allow future development of EEG-based neurofeedback system to guide and evaluate the effect of HD-tDCS on improving movement-related brain function in stroke. 
    more » « less