skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VSS: A Storage System for Video Analytics
We present a new video storage system (VSS) designed to decouple high-level video operations from the low-level details required to store and efficiently retrieve video data. VSS is designed to be the storage subsystem of a video data management system (VDBMS) and is responsible for: (1) transparently and automatically arranging the data on disk in an efficient, granular format; (2) caching frequently-retrieved regions in the most useful formats; and (3) eliminating redundancies found in videos captured from multiple cameras with overlapping fields of view. Our results suggest that VSS can improve VDBMS read performance by up to 54%, reduce storage costs by up to 45%, and enable developers to focus on application logic rather than video storage and retrieval.  more » « less
Award ID(s):
1703051
PAR ID:
10257128
Author(s) / Creator(s):
Date Published:
Journal Name:
SIGMOD/PODS '21: Proceedings of the 2021 International Conference on Management of Data
Page Range / eLocation ID:
685-696
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recently, video database management systems (VDBMSs) have re-emerged as an active area of research and development. To accelerate innovation in this area, we present Visual Road, a benchmark that evaluates the performance of these systems. Visual Road comes with a data generator and a suite of queries over cameras positioned within a simulated metropolitan environment. Visual Road's video data is automatically generated with a high degree of realism, and annotated using a modern simulation and visualization engine. This allows for VDBMS performance evaluation while scaling up the size of the input data. Visual Road is designed to evaluate a broad variety of VDBMSs: real-time systems, systems for longitudinal analytical queries, systems processing traditional videos, and systems designed for 360 videos. We use the benchmark to evaluate three recent VDBMSs both in capabilities and performance. 
    more » « less
  2. null (Ed.)
    Modern video data management systems store videos as a single encoded file, which significantly limits possible storage level optimizations. We design, implement, and evaluate TASM, a new tile-based storage manager for video data. TASM uses a feature in modern video codecs called "tiles" that enables spatial random access into encoded videos. TASM physically tunes stored videos by optimizing their tile layouts given the video content and a query workload. Additionally, TASM dynamically tunes that layout in response to changes in the query workload or if the query workload and video contents are incrementally discovered. Finally, TASM also produces efficient initial tile layouts for newly ingested videos. We demonstrate that TASM can speed up subframe selection queries by an average of over 50% and up to 94%. TASM can also improve the throughput of the full scan phase of object detection queries by up to 2×. 
    more » « less
  3. In this paper, we will present SketchQL, a video database management system (VDBMS) for retrieving video moments with a sketch-based query interface. This novel interface allows users to specify object trajectory events with simple mouse drag-and-drop operations. Users can use trajectories of single objects as building blocks to compose complex events. Using a pre-trained model that encodes trajectory similarity, SketchQL achieves zero-shot video moments retrieval by performing similarity searches over the video to identify clips that are the most similar to the visual query. In this demonstration, we introduce the graphic user interface of SketchQL and detail its functionalities and interaction mechanisms. We also demonstrate the end-to-end usage of SketchQL from query composition to video moments retrieval using real-world scenarios. 
    more » « less
  4. In recent years, deep learning models have revolutionized computer vision, enabling diverse applications. However, these models are computationally expensive, and leveraging them for video analyt- ics involves low-level imperative programming. To address these efficiency and usability challenges, the database community has de- veloped video database management systems (VDBMSs). However, existing VDBMSs lack extensibility and composability and do not support holistic system optimizations, limiting their practical appli- cation. In response to these issues, we present our vision for EVA, a VDBMS that allows for extensible support of user-defined functions and employs a Cascades-style query optimizer. Additionally, we leverage RAY’s distributed execution to enhance scalability and performance and explore hardware-specific optimizations to facilitate runtime optimizations. We discuss the architecture and design of EVA, our achievements thus far, and our research roadmap. 
    more » « less
  5. Current video database management systems (VDBMSs) fail to support the growing number of video datasets in diverse domains because these systems assume clean data and rely on pretrained models to detect known objects or actions. Existing systems also lack good support for compositional queries that seek events con- sisting of multiple objects with complex spatial and temporal rela- tionships. In this paper, we propose VOCAL, a vision of a VDBMS that supports efficient data cleaning, exploration and organization, and compositional queries, even when no pretrained model exists to extract semantic content. These techniques utilize optimizations to minimize the manual effort required of users. 
    more » « less