skip to main content


Search for: All records

Award ID contains: 1703051

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Current video database management systems (VDBMSs) fail to support the growing number of video datasets in diverse domains because these systems assume clean data and rely on pretrained models to detect known objects or actions. Existing systems also lack good support for compositional queries that seek events con- sisting of multiple objects with complex spatial and temporal rela- tionships. In this paper, we propose VOCAL, a vision of a VDBMS that supports efficient data cleaning, exploration and organization, and compositional queries, even when no pretrained model exists to extract semantic content. These techniques utilize optimizations to minimize the manual effort required of users. 
    more » « less
  2. null (Ed.)
    We present a new video storage system (VSS) designed to decouple high-level video operations from the low-level details required to store and efficiently retrieve video data. VSS is designed to be the storage subsystem of a video data management system (VDBMS) and is responsible for: (1) transparently and automatically arranging the data on disk in an efficient, granular format; (2) caching frequently-retrieved regions in the most useful formats; and (3) eliminating redundancies found in videos captured from multiple cameras with overlapping fields of view. Our results suggest that VSS can improve VDBMS read performance by up to 54%, reduce storage costs by up to 45%, and enable developers to focus on application logic rather than video storage and retrieval. 
    more » « less
  3. null (Ed.)
    Modern video data management systems store videos as a single encoded file, which significantly limits possible storage level optimizations. We design, implement, and evaluate TASM, a new tile-based storage manager for video data. TASM uses a feature in modern video codecs called "tiles" that enables spatial random access into encoded videos. TASM physically tunes stored videos by optimizing their tile layouts given the video content and a query workload. Additionally, TASM dynamically tunes that layout in response to changes in the query workload or if the query workload and video contents are incrementally discovered. Finally, TASM also produces efficient initial tile layouts for newly ingested videos. We demonstrate that TASM can speed up subframe selection queries by an average of over 50% and up to 94%. TASM can also improve the throughput of the full scan phase of object detection queries by up to 2×. 
    more » « less
  4. null (Ed.)
    Many recent video applications |including autonomous driving, traffic monitoring, drone analytics, large-scale surveillance networks, and virtual reality require reasoning about, combining, and operating over many video streams, each with distinct position and orientation. However, modern video data management systems are largely designed to process individual streams of video data as if they were independent and unrelated. In this paper, we present VisualWorldDB, a vision and an initial architecture for a new type of database management system optimized for multi-video applications. VisualWorldDB ingests video data from many perspectives and makes them queryable as a single multidimensional visual object. It incorporates new techniques for optimizing, executing, and storing multi-perspective video data. Our preliminary results suggest that this approach allows for faster queries and lower storage costs, improving the state of the art for applications that operate over this type of video data. 
    more » « less
  5. null (Ed.)
    Compressed videos constitute 70% of Internet traffic, and video upload growth rates far outpace compute and storage improvement trends. Past work in leveraging perceptual cues like saliency, i.e., regions where viewers focus their perceptual attention, reduces compressed video size while maintaining perceptual quality, but requires significant changes to video codecs and ignores the data management of this perceptual information. In this paper, we propose Vignette, a compression technique and storage manager for perception-based video compression in the cloud. Vignette complements off-the-shelf compression software and hardware codec implementations. Vignette's compression technique uses a neural network to predict saliency information used during transcoding, and its storage manager integrates perceptual information into the video storage system. Our results demonstrate the benefit of embedding information about the human visual system into the architecture of cloud video storage systems. 
    more » « less
  6. null (Ed.)
    Recently, video database management systems (VDBMSs) have re-emerged as an active area of research and development. To accelerate innovation in this area, we present Visual Road, a benchmark that evaluates the performance of these systems. Visual Road comes with a data generator and a suite of queries over cameras positioned within a simulated metropolitan environment. Visual Road's video data is automatically generated with a high degree of realism, and annotated using a modern simulation and visualization engine. This allows for VDBMS performance evaluation while scaling up the size of the input data. Visual Road is designed to evaluate a broad variety of VDBMSs: real-time systems, systems for longitudinal analytical queries, systems processing traditional videos, and systems designed for 360 videos. We use the benchmark to evaluate three recent VDBMSs both in capabilities and performance. 
    more » « less
  7. We present the data model, architecture, and evaluation ofLightDB, a database management system designed to efficientlymanage virtual, augmented, and mixed reality (VAMR) video con-tent. VAMR video differs from its two-dimensional counterpartin that it is spherical with periodic angular dimensions, is nonuni-formly and continuously sampled, and applications that consumesuch videos often have demanding latency and throughput require-ments. To address these challenges, LightDB treats VAMR videodata as a logically-continuous six-dimensional light field. Further-more, LightDB supports a rich set of operations over light fields,and automatically transforms declarative queries into executablephysical plans. We have implemented a prototype of LightDB and,through experiments with VAMR applications in the literature, wefind that LightDB offers up to 4×throughput improvements com-pared with prior work. 
    more » « less