skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Availability-guaranteed slice composition for service function chains in 5G transport networks
Availability is a key service metric when deploying service function chains (SFCs) over network slices in 5G networks. We study the problem of determining the composition of a slice for a service function chain and the mapping of the slice to the physical transport network in a way that guarantees availability of the SFC while minimizing cost. To improve the availability, we design a slice that provides multiple paths (possibly with non-disjoint routing over the physical infrastructure) for hosting SFCs, and we determine the appropriate dimensioning of bandwidth on each path. Our simulation results show the effectiveness of our approach in terms of the cost of establishing the SFC and the SFC acceptance ratio.  more » « less
Award ID(s):
2008856
PAR ID:
10209156
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of Optical Communications and Networking
Volume:
13
Issue:
3
ISSN:
1943-0620; JOCNBB
Format(s):
Medium: X Size: Article No. 14
Size(s):
Article No. 14
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we consider the network slice composition problem for Service Function Chains (SFCs), which addresses the issue of allocating bandwidth and VNF resources in a way that guarantees the availability of the SFC while minimizing cost. For the purpose of satisfying the availability requirement of the SFC, we adapt a traffic-weighted availability model which ensures that the long-term fraction of traffic supported by the slice topology remains above a desired threshold. We propose a method for composing a single or multi-path slice topology and for properly dimensioning VNF replicas and bandwidth on the slice paths. Through simulations, we show that our proposed algorithm can reduce the total cost of establishment compared to a dedicated protection approach in 5G networks. 
    more » « less
  2. Network Function Virtualization (NFV) emerges as a promising paradigm with the potential for cost-efficiency, manage-convenience, and flexibility, where the service function chain (SFC) deployment scheme is a crucial technology. In this paper, we propose an Ant Colony Optimization (ACO) meta-heuristic algorithm for the Online SFC Deployment, called ACO-OSD, with the objectives of jointly minimizing the server operation cost and network latency. As a meta-heuristic algorithm, ACO-OSD performs better than the state-of-art heuristic algorithms, specifically 42.88% lower total cost on average. To reduce the time cost of ACO-OSD, we design two acceleration mechanisms: the Next-Fit (NF) strategy and the many-to-one model between SFC deployment schemes and ant-tours. Besides, for the scenarios requiring real-time decisions, we propose a novel online learning framework based on the ACO-OSD algorithm, called prior-based learning real-time placement (PLRP). It realizes near real-time SFC deployment with the time complexity of O(n), where n is the total number of VNFs of all newly arrived SFCs. It meanwhile maintains a performance advantage with 36.53% lower average total cost than the state-of-art heuristic algorithms. Finally, we perform extensive simulations to demonstrate the outstanding performance of ACO-OSD and PLRP compared with the benchmarks. 
    more » « less
  3. With the advent of Network Function Virtualization (NFV), Physical Network Functions (PNFs) are gradually being replaced by Virtual Network Functions (VNFs) that are hosted on general purpose servers. Depending on the call flows for specific services, the packets need to pass through an ordered set of network functions (physical or virtual) called Service Function Chains (SFC) before reaching the destination. Conceivably for the next few years during this transition, these networks would have a mix of PNFs and VNFs, which brings an interesting mix of network problems that are studied in this paper: (1) How to find an SFC-constrained shortest path between any pair of nodes? (2) What is the achievable SFC-constrained maximum flow? (3) How to place the VNFs such that the cost (the number of nodes to be virtualized) is minimized, while the maximum flow of the original network can still be achieved even under the SFC constraint? In this work, we will try to address such emerging questions. First, for the SFC-constrained shortest path problem, we propose a transformation of the network graph to minimize the computational complexity of subsequent applications of any shortest path algorithm. Second, we formulate the SFC-constrained maximum flow problem as a fractional multicommodity flow problem, and develop a combinatorial algorithm for a special case of practical interest. Third, we prove that the VNFs placement problem is NP-hard and present an alternative Integer Linear Programming (ILP) formulation. Finally, we conduct simulations to elucidate our theoretical results. 
    more » « less
  4. Service function chaining (SFC), consisting of a sequence of virtual network functions (VNFs), is the de-facto service provisioning mechanism in VNF-enabled data centers (VDCs). However, for the SFC, the dynamic and diverse virtual machine (VM) traffic must traverse a sequence of VNFs possibly installed at different locations at VDCs, resulting in prolonged network delay, redundant network traffic, and large consumption of cloud resources (e.g., bandwidth and energy). Such adverse effects of the SFC, which we refer to as SFC traffic storm, significantly impede its efficiency and practical implementation.In this paper, we solve the SFC traffic storm problem by proposing AggVNF, a framework wherein the VNFs of an SFC are implemented into one aggregate VNF while multiple instances of aggregate VNFs are available in the VDC. AggVNF adaptively allocates and migrates aggregate VNFs to optimize cloud resources in dynamic VDCs while achieving the load balance of VNFs. At the core of the AggVNF are two graph-theoretical problems that have not been adequately studied. We solve both problems by proposing optimal, approximate, and heuristic algorithms. Using real traffic patterns in Facebook data centers, we show that a) our VNF allocation algorithms yield traffic costs 56.3% smaller than the latest research using the SFC design, b) our VNF migration algorithms yield 84.2% less traffic than the latest research using the SFC design, and c) VNF migration is an effective technique in mitigating dynamic traffic in VDCs, reducing the total traffic cost by up to 24.8%. 
    more » « less
  5. 5G and beyond communication networks require satisfying very low latency standards, high reliability, high- speed user connectivity, more security, improved capacity and better service demands. Augmenting such a wide range of KPIs (Key Performance Indicators) needs a smart, intelligent and programmable solution for TSPs (Telecommunication Service Providers). Resource availability and quality sustainability are challenging parameters in a heterogeneous 5G environment. Programmable Dynamic Network Slicing (PDNS) is a key technology enabling parameter that can allow multiple tenants to bring their versatile applications simultaneously over shared physical infrastructure. Latest emerging technologies like virtualized Software- Defined Networks (vSDN) and Artificial Intelligence (AI) play a pivotal supporting role in solving the above-mentioned constraints. Using the PDNS framework, we have proposed a novel slice backup algorithm leveraging Deep Learning (DL) neural network to orchestrate network latency and load efficiently. Our model has been trained using the available KPIs and incoming traffic is analyzed. The proposed solution performs stable load balancing between shared slices even if certain extreme conditions (slice unavailability) through intelligent resource allocation. The framework withstands service outage and always select the most suitable slice as a backup. Our results show latency-aware resource distribution for better network stability. 
    more » « less