skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Uncertain times: the redshift–time relation from cosmology and stars
ABSTRACT Planck data provide precise constraints on cosmological parameters when assuming the base ΛCDM model, including a 0.17 per cent measurement of the age of the Universe, $t_0=13.797 \pm 0.023\, {\rm Gyr}$. However, the persistence of the ‘Hubble tension’ calls the base ΛCDM model’s completeness into question and has spurred interest in models such as early dark energy (EDE) that modify the assumed expansion history of the Universe. We investigate the effect of EDE on the redshift–time relation z↔t and find that it differs from the base ΛCDM model by at least ${\approx } 4{{\ \rm per\ cent}}$ at all t and z. As long as EDE remains observationally viable, any inferred t ← z or z ← t quoted to a higher level of precision do not reflect the current status of our understanding of cosmology. This uncertainty has important astrophysical implications: the reionization epoch – 10 > z > 6 – corresponds to disjoint lookback time periods in the base ΛCDM and EDE models, and the EDE value of t0 = 13.25 ± 0.17 Gyr is in tension with published ages of some stars, star clusters, and ultrafaint dwarf galaxies. However, most published stellar ages do not include an uncertainty in accuracy (due to, e.g. uncertain distances and stellar physics) that is estimated to be $\sim 7\!-\!10{{\ \rm per\ cent}}$, potentially reconciling stellar ages with $t_{0,\rm EDE}$. We discuss how the big data era for stars is providing extremely precise ages ($\lt 1{{\ \rm per\ cent}}$) and how improved distances and treatment of stellar physics such as convection could result in ages accurate to $4\!-\!5{{\ \rm per\ cent}}$, comparable to the current accuracy of t↔z. Such precise and accurate stellar ages can provide detailed insight into the high-redshift Universe independent of a cosmological model.  more » « less
Award ID(s):
1910346 1752913
PAR ID:
10258070
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
505
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2764 to 2783
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cold Dark Matter with cosmological constant (ΛCDM) cosmological models with early dark energy (EDE) have been proposed to resolve tensions between the Hubble constant $H_0=100\, h$ km ṡ−1Ṁpc−1 measured locally, giving h ≈ 0.73, and H0 deduced from Planck cosmic microwave background (CMB) and other early-Universe measurements plus ΛCDM, giving h ≈ 0.67. EDE models do this by adding a scalar field that temporarily adds dark energy equal to about 10 per cent of the cosmological energy density at the end of the radiation-dominated era at redshift z ∼ 3500. Here, we compare linear and non-linear predictions of a Planck-normalized ΛCDM model including EDE giving h = 0.728 with those of standard Planck-normalized ΛCDM with h = 0.678. We find that non-linear evolution reduces the differences between power spectra of fluctuations at low redshifts. As a result, at z = 0 the halo mass functions on galactic scales are nearly the same, with differences only 1–2 per cent. However, the differences dramatically increase at high redshifts. The EDE model predicts 50 per cent more massive clusters at z = 1 and twice more galaxy-mass haloes at z = 4. Even greater increases in abundances of galaxy-mass haloes at higher redshifts may make it easier to reionize the universe with EDE. Predicted galaxy abundances and clustering will soon be tested by the James Webb Space Telescope (JWST) observations. Positions of baryonic acoustic oscillations (BAOs) and correlation functions differ by about 2 per cent between the models – an effect that is not washed out by non-linearities. Both standard ΛCDM and the EDE model studied here agree well with presently available acoustic-scale observations, but the Dark Energy Spectroscopic Instrument and Euclid measurements will provide stringent new tests. 
    more » « less
  2. ABSTRACT

    JWST has revealed a large population of UV-bright galaxies at $z\gtrsim 10$ and possibly overly massive galaxies at $z\gtrsim 7$, challenging standard galaxy formation models in the ΛCDM cosmology. We use an empirical galaxy formation model to explore the potential of alleviating these tensions through an Early Dark Energy (EDE) model, originally proposed to solve the Hubble tension. Our benchmark model demonstrates excellent agreement with the UV luminosity functions (UVLFs) at $4\lesssim z \lesssim 10$ in both ΛCDM and EDE cosmologies. In the EDE cosmology, the UVLF measurements at $z\simeq 12$ based on spectroscopically confirmed galaxies (eight galaxies at $z\simeq 11\!-\!13.5$) exhibit no tension with the benchmark model. Photometric constraints at $12 \lesssim z\lesssim 16$ can be fully explained within EDE via either moderately increased star-formation efficiencies ($\epsilon _{\ast}\sim 3\!-\!10\ \hbox{per cent}$ at $M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$) or enhanced UV variabilities ($\sigma _{\rm UV}\sim 0.8\!-\!1.3$ mag at $M_{\rm halo}\sim 10^{10.5}{\, \rm M_\odot }$) that are within the scatter of hydrodynamical simulation predictions. A similar agreement is difficult to achieve in $\Lambda$CDM, especially at $z\gtrsim 14$, where the required $\sigma _{\rm UV}$ exceeds the maximum value seen in simulations. Furthermore, the implausibly large cosmic stellar mass densities inferred from some JWST observations are no longer in tension with cosmology when the EDE is considered. Our findings highlight EDE as an intriguing unified solution to a fundamental problem in cosmology and the recent tensions raised by JWST observations. Data at the highest redshifts reached by JWST will be crucial for differentiating modified galaxy formation physics from new cosmological physics.

     
    more » « less
  3. ABSTRACT Large pristine samples of red clump stars are highly sought after given that they are standard candles and give precise distances even at large distances. However, it is difficult to cleanly select red clumps stars because they can have the same Teff and log g as red giant branch stars. Recently, it was shown that the asteroseismic parameters, $\rm {\Delta }$P and $\rm {\Delta \nu }$, which are used to accurately select red clump stars, can be derived from spectra using the change in the surface carbon to nitrogen ratio ([C/N]) caused by mixing during the red giant branch. This change in [C/N] can also impact the spectral energy distribution. In this study, we predict the $\rm {\Delta }$P, $\rm {\Delta \nu }$, Teff, and log g using 2MASS, AllWISE, Gaia, and Pan-STARRS data in order to select a clean sample of red clump stars. We achieve a contamination rate of ∼20 per cent, equivalent to what is achieved when selecting from Teff and log g derived from low-resolution spectra. Finally, we present two red clump samples. One sample has a contamination rate of ∼20 per cent and ∼405 000 red clump stars. The other has a contamination of ∼33 per cent and ∼2.6 million red clump stars that includes ∼75 000 stars at distances >10 kpc. For |b| > 30 deg, we find ∼15 000 stars with contamination rate of ∼9 per cent. The scientific potential of this catalogue for studying the structure and formation history of the Galaxy is vast, given that it includes millions of precise distances to stars in the inner bulge and distant halo where astrometric distances are imprecise. 
    more » « less
  4. ABSTRACT Surveys of the Milky Way (MW) and M31 enable detailed studies of stellar populations across ages and metallicities, with the goal of reconstructing formation histories across cosmic time. These surveys motivate key questions for galactic archaeology in a cosmological context: When did the main progenitor of an MW/M31-mass galaxy form, and what were the galactic building blocks that formed it? We investigate the formation times and progenitor galaxies of MW/M31-mass galaxies using the Feedback In Realistic Environments-2 cosmological simulations, including six isolated MW/M31-mass galaxies and six galaxies in Local Group (LG)-like pairs at z = 0. We examine main progenitor ‘formation’ based on two metrics: (1) transition from primarily ex-situ to in-situ stellar mass growth and (2) mass dominance compared to other progenitors. We find that the main progenitor of an MW/M31-mass galaxy emerged typically at z ∼ 3–4 ($11.6\!\!-\!\!12.2\, \rm {Gyr}$ ago), while stars in the bulge region (inner 2 kpc) at z = 0 formed primarily in a single main progenitor at z ≲ 5 (${\lesssim} \!12.6\, \rm {Gyr}$ ago). Compared with isolated hosts, the main progenitors of LG-like paired hosts emerged significantly earlier (Δz ∼ 2, $\Delta t\!\sim \!1.6\, \rm {Gyr}$), with ∼4× higher stellar mass at all z ≳ 4 (${\gtrsim} \!12.2\, \rm {Gyr}$ ago). This highlights the importance of environment in MW/M31-mass galaxy formation, especially at early times. On average, about 100 galaxies with $\rm {\it{ M}}_\rm {star}\!\gtrsim \!10^5\, \rm {M}_\odot$ went into building a typical MW/M31-mass system. Thus, surviving satellites represent a highly incomplete census (by ∼5×) of the progenitor population. 
    more » « less
  5. ABSTRACT

    The measurement of the expansion history of the Universe from the redshift unknown gravitational wave (GW) sources (dark GW sources) detectable from the network of LIGO-Virgo-KAGRA (LVK) detectors depends on the synergy with the galaxy surveys having accurate redshift measurements over a broad redshift range, large sky coverage, and detectability of fainter galaxies.In this work, we explore the possible synergy of the LVK with the spectroscopic galaxy surveys, such as DESI and SPHEREx, to measure the cosmological parameters which are related to the cosmic expansion history and the GW bias parameters. We show that by using the 3D spatial cross-correlation between the dark GW sources and the spectroscopic galaxy samples, we can measure the value of Hubble constant with about $2{{\ \rm per\ cent}}$ and $1.5{{\ \rm per\ cent}}$ precision from LVK+DESI and LVK+SPHEREx, respectively within the 5 yr of observation time with $50{{\ \rm per\ cent}}$ duty-cycle. Similarly, the dark energy equation of state can be measured with about $10{{\ \rm per\ cent}}$ and $8{{\ \rm per\ cent}}$ precision from LVK+DESI and LVK+SPHEREx, respectively. We find that due to the large sky coverage of SPHEREx than DESI, performance in constraining the cosmological parameters is better from the former than the latter. By combining Euclid along with DESI and SPHEREx, a marginal gain in the measurability of the cosmological parameters is possible from the sources at high redshift (z ≥ 0.9).

     
    more » « less