skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Excited state dynamics in a sodium and iodine co-doped lead telluride nanowire
Materials that convert wasted heat into electricity are needed to help solve global warming and other climate challenges. Thermoelectric nanowires are novel metamaterials for such applications. Non-adiabatic coupling computations are critical in understanding thermally activated charge transfer in thermoelectric materials. Here, non-adiabatic computations are used to evaluate electron relaxation rates in lead telluride nanowires. This work reports results on PbTe (lead telluride) atomistic models doped with sodium and iodine that contain 288 atoms in simulation cells with periodic boundary conditions. The calculations are performed on the basis of ground-state DFT under the VASP software. The transitions between states are modelled in terms of Redfield equation of motion parameterised by on-the-fly non-adiabatic couplings along thermalised molecular dynamic trajectory. The initial states are approximated by the promotion of an electron from occupied to unoccupied Kohn–Sham orbital. In each transition, the change of the energy and spatial charge distribution with respect to time were calculated, demonstrating formation of charge transfer. The trends of electron and hole relaxation rates comply with the energy gap law.  more » « less
Award ID(s):
1944921 2004197
PAR ID:
10258131
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecular Physics
ISSN:
0026-8976
Page Range / eLocation ID:
e1874557
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electron transfer is a fundamental process in chemistry, biology, and physics. One of the most intriguing questions concerns the realization of the transitions between nonadiabatic and adiabatic regimes of electron transfer. Using colloidal quantum dot molecules, we computationally demonstrate how the hybridization energy (electronic coupling) can be tuned by changing the neck dimensions and/or the quantum dot sizes. This provides a handle to tune the electron transfer from the incoherent nonadiabatic regime to the coherent adiabatic regime in a single system. We develop an atomistic model to account for several states and couplings to the lattice vibrations and utilize the mean-field mixed quantum-classical method to describe the charge transfer dynamics. Here, we show that charge transfer rates increase by several orders of magnitude as the system is driven to the coherent, adiabatic limit, even at elevated temperatures, and delineate the inter-dot and torsional acoustic modes that couple most strongly to the charge transfer dynamics. 
    more » « less
  2. Both organohalide perovskites and colloidal quantum dots are attractive and promising materials for optoelectronic applications. Recent experiments have combined the two to create “quantum dot-in-perovskite” assemblies for highly efficient light emissions. In this work, we unravel photoexcitation dynamics at the interface between the perovskite and the quantum dot by means of first-principle non-adiabatic molecular dynamics simulations. We find that such assemblies adopt the type-I band structure and are free of defect states. The interfacial and the electronic structure are robust against the thermal fluctuations at 300K. The lowest excitation is predicted to be localized entirely on the quantum dot and the photoexcited charge transfer takes place in a picosecond timescale. The charge transfer dynamics of the photoexcited electron and hole exhibits a moderate asymmetry, which can be attributed to the differences in electronic coupling between the donor and the acceptor and the electron-phonon coupling. The ultrafast and balanced charge transfer dynamics endows the ‘dot-in-a-crystal’ devices with unprecedented performance, which could lead to important applications in photovoltaics, photocatalysis, and infrared light emissions. 
    more » « less
  3. The past decade has witnessed the emergence of a new frontier in condensed matter physics: topological materials with an electronic band structure belonging to a different topological class from that of ordinary insulators and metals. This non-trivial band topology gives rise to robust, spin-polarized electronic states with linear energy–momentum dispersion at the edge or surface of the materials. For topological materials to be useful in electronic devices, precise control and accurate detection of the topological states must be achieved in nanostructures, which can enhance the topological states because of their large surface-to-volume ratios. In this Review, we discuss notable synthesis and electron transport results of topological nanomaterials, from topological insulator nanoribbons and plates to topological crystalline insulator nanowires and Weyl and Dirac semimetal nanobelts. We also survey superconductivity in topological nanowires, a nanostructure platform that might enable the controlled creation of Majorana bound states for robust quantum computations. Two material systems that can host Majorana bound states are compared: spin–orbit coupled semiconducting nanowires and topological insulating nanowires, a focus of this Review. Finally, we consider the materials and measurement challenges that must be overcome before topological nanomaterials can be used in next-generation electronic devices. 
    more » « less
  4. Emergent, flowable electrochemical energy storage technologies suitable for grid-scale applications are often limited by sluggish electron transfer kinetics that impede overall energy conversion efficiencies. To improve our understanding of these kinetic limitations in heterometallic charge carriers, we study the role of solvent in influencing the rates of heterogeneous electron transfer, demonstrating its impact on the kinetics of di-titanium substituted polyoxovanadate-alkoxide cluster, [Ti 2 V 4 O 5 (OMe) 14 ]. Our studies also illustrate that the one electron reduction and oxidation processes exhibit characteristically different rates, suggesting that different mechanisms of electron transfer are operative. We report that a 1 : 4 v/v mixture of propylene carbonate and acetonitrile can lead to a three-fold increase in the rate of electron transfer for one electron oxidation, and a two-fold increase in the one electron reduction process as compared to pure acetonitrile. We attribute this behavior to solvent–solvent interactions that lead to a deviation from ideal solution behavior. Coulombic efficiencies ≥90% are maintained in MeCN–PC mixtures over 20 charge/discharge cycles, greater than the efficiencies that are obtained for individual solvents. The results provide insight into the role of solvent in improving the rate of charge transfer and paves a way to systematically tune solvent composition to yield faster electron transfer kinetics. 
    more » « less
  5. null (Ed.)
    Of particular interest in radiation-induced charge transfer processes in DNA is the extent of hole localization immediately after ionization and subsequent relaxation. To address this, we considered double stranded oligomers containing guanine (G) and 8-oxoguanine (8OG), i.e. , ds(5′-GGG-3′) and ds(5′-G8OGG-3′) in B-DNA conformation. Using DFT, we calculated a variety of properties, viz. , vertical and adiabatic ionization potentials, spin density distributions in oxidized stacks, solvent and solute reorganization energies and one-electron oxidation potential ( E 0 ) in the aqueous phase. Calculations for the vertical state of the -GGG- cation radical showed that the spin was found mainly (67%) on the middle G. However, upon relaxation to the adiabatic -GGG- cation radical, the spin localized (96%) on the 5′-G, as observed in experiments. Hole localizations on the middle G and 3′-G were higher in energy by 0.5 kcal mol −1 and 0.4 kcal mol −1 , respectively, than that of 5′-G. In the -G8OGG- cation radical, the spin localized only on the 8OG in both vertical and adiabatic states. The calculated vertical ionization potentials of -GGG- and -G8OGG- stacks were found to be lower than that of the vertical ionization potential of a single G in DNA. The calculated E 0 values of -GGG- and -G8OGG- stacks are 1.15 and 0.90 V, respectively, which owing to stacking effects are substantially lower than the corresponding experimental E 0 values of their monomers (1.49 and 1.18 V, respectively). SOMO to HOMO level switching is observed in these oxidized stacks. Consequently, our calculations predict that local double oxidations in DNA will form triplet diradical states, which are especially significant for high LET radiations. 
    more » « less