Micro-Raman spectroscopy has become an important tool in probing thermophysical properties in functional materials. Localized heating by the focused Raman excitation laser beam can produce both stress and local nonequilibrium phonons in the material. Here, we investigate the effects of hot optical phonons in the Raman spectra of molybdenum disulfide and distinguish them from those caused by thermally induced compressive stress, which causes a Raman frequency blue shift. We use a thermomechanical analysis to correct for this stress effect in the equivalent lattice temperature extracted from the measured Raman peak shift. When the heating Gaussian laser beam is reduced to 0.71 μm, the corrected peak shift temperature rise is 17% and 8%, respectively, higher than those determined from the measured peak shift and linewidth without the stress correction, and 32% smaller than the optical phonon temperature rise obtained from the anti-Stokes to Stokes intensity ratio. This nonequilibrium between the hot optical phonons and the lattice vanishes as the beam width increases to 1.53 μm. Much less pronounced than those reported in prior micro-Raman measurements of suspended graphene, this observed hot phonon behavior agrees with a first-principles based multitemperature model of overpopulated zone-center optical phonons compared to other optical phonons in the Brillouin zone and acoustic phonons of this prototypical transition metal dichalcogenide. The findings provide detailed insight into the energy relaxation processes in this emerging electronic and optoelectronic material and clarify an important question in micro-Raman measurements of thermal transport in this and other two-dimensional materials.
more »
« less
In situ monitoring of electrical and optoelectronic properties of suspended graphene ribbons during laser-induced morphological changes
Exploring ways to tune and improve the performance of graphene is of paramount importance in creating functional graphene-based electronic and optoelectronic devices. Recent advancements have shown that altering the morphology of graphene can have a pronounced effect on its properties. Here, we present a practical and facile method to manipulate the morphology of a suspended graphene ribbon using a laser to locally induce heating while monitoring its electrical and optoelectronic properties in situ . Electrical measurements reveal that the conductance of suspended graphene transistors can be tuned by modifying its morphology. Additionally, scanning photocurrent measurements show that laser-induced folded graphene ribbons display significantly enhanced localized photocurrent responses in comparison with their flat counterparts. Moreover, the localization of the laser-induced heating allows for a series of folds to be induced along the entire graphene ribbon, creating targeted photocurrent enhancement. Through further investigations, it is revealed that the photo-thermoelectric effect is the primary mechanism for the increased photocurrent response of the device. Our experimental results explore the mechanisms and consequences of the folding process as well as provide a strategy to manipulate morphology and physical properties of graphene for future engineering of electronics and optoelectronics.
more »
« less
- Award ID(s):
- 1810088
- PAR ID:
- 10258179
- Date Published:
- Journal Name:
- Nanoscale Advances
- Volume:
- 2
- Issue:
- 9
- ISSN:
- 2516-0230
- Page Range / eLocation ID:
- 4034 to 4040
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This research introduces a readily available and non-chemical combinatorial production approach, known as the laser-induced writing process, to achieve laser-processed conductive graphene traces. The laser-induced graphene (LIG) structure and properties can be improved by adjusting the laser conditions and printing parameters. This method demonstrates the ability of laser-induced graphene (LIG) to overcome the electrothermal issues encountered in electronic devices. To additively process the PEI structures and the laser-induced surface, a high-precision laser nScrypt printer with different power, speed, and printing parameters was used. Raman spectroscopy and scanning electron microscopy analysis revealed similar results for laser-induced graphene morphology and structural chemistry. Significantly, the 3.2 W laser-induced graphene crystalline size (La; 159 nm) is higher than the higher power (4 W; 29 nm) formation due to the surface temperature and oxidation. Under four-point probe electrical property measurements, at a laser power of 3.8 W, the resistivity of the co-processed structure was three orders of magnitude larger. The LIG structure and property improvement are possible by varying the laser conditions and the printing parameters. The lowest gauge factor (GF) found was 17 at 0.5% strain, and the highest GF found was 141.36 at 5%.more » « less
-
Abstract The recently proposed concept of graphene photodetectors offers remarkable properties such as unprecedented compactness, ultrabroadband detection, and an ultrafast response speed. However, owing to the low optical absorption of pristine monolayer graphene, the intrinsically low responsivity of graphene photodetectors significantly hinders the development of practical devices. To address this issue, numerous efforts have thus far been made to enhance the light–graphene interaction using plasmonic structures. These approaches, however, can be significantly advanced by leveraging the other critical aspect of graphene photoresponsivity enhancement—electrical junction control. It has been reported that the dominant photocarrier generation mechanism in graphene is the photothermoelectric (PTE) effect. Thus, the two energy conversion mechanisms involved in the graphene photodetection process are light-to-heat and heat-to-electricity conversions. In this work, we propose a meticulously designed device architecture to simultaneously enhance the two conversion efficiencies. Specifically, a gap plasmon structure is used to absorb a major portion of the incident light to induce localized heating, and a pair of split gates is used to produce a p-n junction in graphene to augment the PTE current generation. The gap plasmon structure and the split gates are designed to share common key components so that the proposed device architecture concurrently realizes both optical and electrical enhancements. We experimentally demonstrate the dominance of the PTE effect in graphene photocurrent generation and observe a 25-fold increase in the generated photocurrent compared to the un-enhanced cases. While further photocurrent enhancement can be achieved by applying a DC bias, the proposed device concept shows vast potential for practical applications.more » « less
-
Abstract Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in‐plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic–plastic straining is reported that utilizes GPa‐level laser shocking at a high strain rate (dε/dt) ≈ 106–107s−1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High‐resolution imaging and Raman spectroscopy reveal strain‐induced modifications to the atomic and electronic structure in graphene and first‐principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries.more » « less
-
Abstract Ruddleson–Popper (RP) perovskites have emerged as a class of material inheriting the superior optoelectronic properties of two materials: perovskites and 2D materials. The large exciton binding energy and natural quantum well structure not only make these materials ideal platforms to study light–matter interactions but also render them suitable for fabrication of various functional optoelectronic devices. Nanoscale structuring and morphology control have led to semiconductors with enhanced functionalities. Nanowires of semiconducting materials are extensively used for important applications like lasing and sensing. However, catalyst and template‐free scalable growth of nanowires of 2D perovskites has remained elusive. In this paper, a facile approach for morphology‐controlled growth of nanowires of 2D perovskite, (BA)2PbI4, is demonstrated. Additionally, it is shown that the photoluminescence (PL) from the nanowires is highly polarized with a polarization ratio as large as ≈0.73, which is one of the largest reported for perovskites. It is further shown that the photocurrent from the hybrid nanowire/graphene device is also sensitive to the polarization of the incident light with the photocurrent anisotropy ratio of ≈3.62 (much larger than the previously reported value of 2.68 for perovskites), thus demonstrating the potential of these nanowires as highly efficient photodetectors for polarized light.more » « less
An official website of the United States government

