We construct Kähler–Einstein metrics with negative scalar curvature near an isolated log canonical (non-log terminal) singularity.Such metrics are complete near the singularity if the underlying space has complex dimension 2. We also establish a stability result for Kähler–Einstein metrics near certain types of isolated log canonical singularity. As application, for complex dimension 2 log canonical singularity, we show that any complete Kähler–Einstein metric of negative scalar curvature near an isolated log canonical (non-log terminal) singularity is smoothly asymptotically close to model Kähler–Einstein metrics from hyperbolic geometry.
- Award ID(s):
- 1709894
- NSF-PAR ID:
- 10258182
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We first provide a stochastic formula for the Carathéodory distance in terms of general Markovian couplings and prove a comparison result between the Carathéodory distance and the complete Kähler metric with a negative lower curvature bound using the Kendall–Cranston coupling. This probabilistic approach gives a version of the Schwarz lemma on complete noncompact Kähler manifolds with a further decomposition Ricci curvature into the orthogonal Ricci curvature and the holomorphic sectional curvature, which cannot be obtained by using Yau–Royden's Schwarz lemma. We also prove coupling estimates on quaternionic Kähler manifolds. As a by‐product, we obtain an improved gradient estimate of positive harmonic functions on Kähler manifolds and quaternionic Kähler manifolds under lower curvature bounds.
-
A Riemannian cone (C,gC) is by definition a warped product C=R+×L with metric gC=dr2⊕r2gL, where (L,gL) is a compact Riemannian manifold without boundary. We say that C is a Calabi-Yau cone if gC is a Ricci-flat Kähler metric and if C admits a gC-parallel holomorphic volume form; this is equivalent to the cross-section (L,gL) being a Sasaki-Einstein manifold. In this paper, we give a complete classification of all smooth complete Calabi-Yau manifolds asymptotic to some given Calabi-Yau cone at a polynomial rate at infinity. As a special case, this includes a proof of Kronheimer's classification of ALE hyper-Kähler 4-manifolds without twistor theory.more » « less
-
In this paper we establish a lower bound for the distance induced by the Kähler-Einstein metric on pseudoconvex domains with positive hyperconvexity index (e.g. positive Diederich-Fornæss index). A key step is proving an analog of the Hopf lemma for Riemannian manifolds with Ricci curvature bounded from below.more » « less
-
Abstract Every compact Kähler manifold with negative first Chern class admits a unique metric such that . Understanding how families of these metrics degenerate gives insight into their geometry and is important for understanding the compactification of the moduli space of negative Kähler–Einstein metrics. I study a special class of such families in complex dimension two. Following the work of Sun and Zhang in the Calabi–Yau case [2019, arXiv:1906.03368], I construct a Kähler–Einstein neck region interpolating between canonical metrics on components of the central fiber. This provides a model for the limiting geometry of metrics in the family.