Kerr beam cleaning is a nonlinear phenomenon in graded-index multimode fiber where power flows toward the fundamental mode, generating bell-shaped output beams. Here we study beam cleaning of femtosecond pulses accompanied by gain in a multimode fiber amplifier. Mode-resolved energy measurements and numerical simulations showed that the amplifier generates beams with high fundamental mode content (greater than 30% of the overall pulse energy) for a wide range of amplification levels. Control experiments using stretched pulses that evolve without strong Kerr nonlinear effects showed a degrading beam profile, in contrast to nonlinear beam cleaning. Temporal measurements showed that seed pulse parameters have a strong effect on the amplified pulse quality. These results may influence the design of future high-performance fiber lasers and amplifiers.
more »
« less
Weak beam self-cleaning of femtosecond pulses in the anomalous dispersion regime
Kerr beam cleaning in graded-index multimode fiber has been investigated in experiments with sub-nanosecond pulses and in experiments with femtosecond pulses at wavelengths where the dispersion is normal. We report a theoretical and experimental study of this effect with femtosecond pulses and anomalous dispersion. In this regime, only weak beam cleaning is observed experimentally, along with strong temporal evolution of the pulse. Numerical simulations exhibit the qualitative trends of the experiments.
more »
« less
- Award ID(s):
- 1912742
- PAR ID:
- 10258385
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 46
- Issue:
- 13
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 3312
- Size(s):
- Article No. 3312
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the modification of a gas phase ultrafast electron diffraction (UED) instrument that enables experiments with both gas and condensed matter targets, where a time-resolved experiment with sub-picosecond resolution is demonstrated with solid state samples. The instrument relies on a hybrid DC-RF acceleration structure to deliver femtosecond electron pulses on the target, which is synchronized with femtosecond laser pulses. The laser pulses and electron pulses are used to excite the sample and to probe the structural dynamics, respectively. The new system is added with capabilities to perform transmission UED on thin solid samples. It allows for cooling samples to cryogenic temperatures and to carry out time-resolved measurements. We tested the cooling capability by recording diffraction patterns of temperature dependent charge density waves in 1T-TaS2. The time-resolved capability is experimentally verified by capturing the dynamics in photoexcited single-crystal gold.more » « less
-
We propose a new approach to supercontinuum generation and carrier-envelope-offset detection based on saturated second-order nonlinear interactions in dispersion-engineered nanowaveguides. The technique developed here broadens the interacting harmonics by forming stable bifurcations of the pulse envelopes due to an interplay between phase-mismatch and pump depletion. We first present an intuitive heuristic model for spectral broadening by second-harmonic generation of femtosecond pulses and show that this model agrees well with experiments. Then, having established strong agreement between theory and experiment, we develop scaling laws that determine the energy required to generate an octave of bandwidth as a function of input pulse duration, device length, and input pulse chirp. These scaling laws suggest that future realization based on this approach could enable supercontinuum generation with orders of magnitude less energy than current state-of-the-art devices.more » « less
-
A major design goal for femtosecond fiber lasers is to increase the output power but not at the cost of increasing the noise level or narrowing the bandwidth. Here, we perform a computational study to optimize the cavity design of a femtosecond fiber laser that is passively modelocked with a semiconductor saturable absorbing mirror (SESAM). We use dynamical methods that are more than a thousand times faster than standard evolutionary methods. We show that we can obtain higher pulse energies and hence higher output powers by simultaneously increasing the output coupling ratio, the gain, and the anomalous group delay dispersion. We can obtain output pulses that are from 5 to 15 times the energy of the pulse in the current experimental design with no penalty in the noise level or bandwidth.more » « less
-
A femtosecond chirped pulse amplifier based on cryogenically cooled Fe:ZnSe was demonstrated at 333 Hz—33 times higher than previous results achieved at near-room-temperature. The long upper-state lifetime allows free-running, diode-pumped Er:YAG lasers to be used as pump lasers. 250-fs, 4.59-mJ pulses are produced with a center wavelength of 4.07 µm, which avoids strong atmospheric CO2absorption that cuts on around 4.2 µm. It is therefore possible to operate the laser in ambient air with good beam quality. By focusing the 18-GW beam in air, harmonics up to the ninth order were observed indicating its potential for use in strong-field experimentation.more » « less