skip to main content


Title: Weak beam self-cleaning of femtosecond pulses in the anomalous dispersion regime

Kerr beam cleaning in graded-index multimode fiber has been investigated in experiments with sub-nanosecond pulses and in experiments with femtosecond pulses at wavelengths where the dispersion is normal. We report a theoretical and experimental study of this effect with femtosecond pulses and anomalous dispersion. In this regime, only weak beam cleaning is observed experimentally, along with strong temporal evolution of the pulse. Numerical simulations exhibit the qualitative trends of the experiments.

 
more » « less
Award ID(s):
1912742
NSF-PAR ID:
10258385
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
46
Issue:
13
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 3312
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The nonlinear propagation of picosecond or femtosecond optical pulses in multimode fiber amplifiers underlies a variety of intriguing physical phenomena as well as the potential for scaling sources of ultrashort pulses to higher powers. However, existing theoretical models of ultrashort-pulse amplification do not include some critical processes, and, as a result, they fail to capture basic features of experiments. We introduce a numerical model that combines steady-state rate equations with the unidirectional pulse propagation equation, incorporating dispersion, Kerr and Raman nonlinearities, and gain/loss-spectral effects in a mode-resolved treatment that is computationally efficient. This model allows investigation of spatiotemporal processes that are strongly affected by gain dynamics. Its capabilities are illustrated through examinations of amplification in few-mode gain fiber, multimode nonlinear amplification, and beam cleaning in a multimode fiber amplifier.

     
    more » « less
  2. Kerr beam cleaning is a nonlinear phenomenon in graded-index multimode fiber where power flows toward the fundamental mode, generating bell-shaped output beams. Here we study beam cleaning of femtosecond pulses accompanied by gain in a multimode fiber amplifier. Mode-resolved energy measurements and numerical simulations showed that the amplifier generates beams with high fundamental mode content (greater than 30% of the overall pulse energy) for a wide range of amplification levels. Control experiments using stretched pulses that evolve without strong Kerr nonlinear effects showed a degrading beam profile, in contrast to nonlinear beam cleaning. Temporal measurements showed that seed pulse parameters have a strong effect on the amplified pulse quality. These results may influence the design of future high-performance fiber lasers and amplifiers.

     
    more » « less
  3. We propose a new approach to supercontinuum generation and carrier-envelope-offset detection based on saturated second-order nonlinear interactions in dispersion-engineered nanowaveguides. The technique developed here broadens the interacting harmonics by forming stable bifurcations of the pulse envelopes due to an interplay between phase-mismatch and pump depletion. We first present an intuitive heuristic model for spectral broadening by second-harmonic generation of femtosecond pulses and show that this model agrees well with experiments. Then, having established strong agreement between theory and experiment, we develop scaling laws that determine the energy required to generate an octave of bandwidth as a function of input pulse duration, device length, and input pulse chirp. These scaling laws suggest that future realization based on this approach could enable supercontinuum generation with orders of magnitude less energy than current state-of-the-art devices.

     
    more » « less
  4. Kerr resonators generate stable frequency combs and ultrashort pulses with applications in telecommunications, biomedicine, and metrology. Chirped pulse solitons recently observed in normal dispersion Kerr resonators with an intracavity spectral filter can enable new material design freedom, reduced fabrication requirements, and the potential for improved ultrashort pulse peak powers. This study examines the design and formation properties of chirped pulse Kerr solitons essential to enable these advances. First, prior theoretical predictions that chirped pulse solitons are relatively insensitive to cavity loss and the strength of the dispersion map are experimentally validated. The loss insensitivity property is applied to demonstrate high-energy pulses in a cavity with a large output coupling and the map insensitivity property is applied to demonstrate femtosecond pulses, for the first time to the best of our knowledge, from chirped pulse solitons in a dispersion-mapped cavity with small net-normal dispersion. The relationship between chirped pulses and bright pulses enabled by higher order dispersion is examined with respect to pulse formation, cavity design parameters, and performance properties. Finally, guidelines for additional improvements are detailed for chirped pulse soliton-based high-performance pulse generation.

     
    more » « less
  5. Conventional time-of-flight (TOF) measurements yield charge carrier mobilities in photovoltaic cells with time resolution limited by the RC time constant of the device, which is on the order of 0.1–1 µs for the systems targeted in the present work. We have recently developed an alternate TOF method, termed nonlinear photocurrent spectroscopy (NLPC), in which carrier drift velocities are determined with picosecond time resolution by applying a pair of laser pulses to a device with an experimentally controlled delay time. In this technique, carriers photoexcited by the first laser pulse are “probed” by way of recombination processes involving carriers associated with the second laser pulse. Here, we report NLPC measurements conducted with a simplified experimental apparatus in which synchronized 40 ps diode lasers enable delay times up to 100 µs at 5 kHz repetition rates. Carrier mobilities of ∼0.025 cm2/V/s are determined for MAPbI3 photovoltaic cells with active layer thicknesses of 240 and 460 nm using this instrument. Our experiments and model calculations suggest that the nonlinear response of the photocurrent weakens as the carrier densities photoexcited by the first laser pulse trap and broaden while traversing the active layer of a device. Based on this aspect of the signal generation mechanism, experiments conducted with co-propagating and counter-propagating laser beam geometries are leveraged to determine a 60 nm length scale of drift velocity dispersion in MAPbI3 films. Contributions from localized states induced by thermal fluctuations are consistent with drift velocity dispersion on this length scale.

     
    more » « less