skip to main content


Search for: All records

Award ID contains: 1912742

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kerr beam cleaning is a nonlinear phenomenon in graded-index multimode fiber where power flows toward the fundamental mode, generating bell-shaped output beams. Here we study beam cleaning of femtosecond pulses accompanied by gain in a multimode fiber amplifier. Mode-resolved energy measurements and numerical simulations showed that the amplifier generates beams with high fundamental mode content (greater than 30% of the overall pulse energy) for a wide range of amplification levels. Control experiments using stretched pulses that evolve without strong Kerr nonlinear effects showed a degrading beam profile, in contrast to nonlinear beam cleaning. Temporal measurements showed that seed pulse parameters have a strong effect on the amplified pulse quality. These results may influence the design of future high-performance fiber lasers and amplifiers.

     
    more » « less
  2. Spatiotemporal mode-locking in a laser with anomalous dispersion is investigated. Mode-locked states with varying modal content can be observed, but we find it difficult to observe highly-multimode states. We describe the properties of these mode-locked states and compare them to the results of numerical simulations. Prospects for the generation of highly-multimode states and lasers based on multimode soliton formation are discussed.

     
    more » « less
  3. The overall goal of photonics research is to understand and control light in new and richer ways to facilitate new and richer applications. Many major developments to this end have relied on nonlinear optical techniques, such as lasing, mode-locking, and parametric downconversion, to enable applications based on the interactions of coherent light with matter. These processes often involve nonlinear interactions between photonic and material degrees of freedom spanning multiple spatiotemporal scales. While great progress has been made with relatively simple optimizations, such as maximizing single-mode coherence or peak intensity alone, the ultimate achievement of coherent light engineering is complete, multidimensional control of light–light and light–matter interactions through tailored construction of complex optical fields and systems that exploit all of light’s degrees of freedom. This capability is now within sight, due to advances in telecommunications, computing, algorithms, and modeling. Control of highly multimode optical fields and processes also facilitates quantitative and qualitative advances in optical imaging, sensing, communication, and information processing since these applications directly depend on our ability to detect, encode, and manipulate information in as many optical degrees of freedom as possible. Today, these applications are increasingly being enhanced or enabled by both multimode engineering and nonlinearity. Here, we provide a brief overview of multimode nonlinear photonics, focusing primarily on spatiotemporal nonlinear wave propagation and, in particular, on promising future directions and routes to applications. We conclude with an overview of emerging processes and methodologies that will enable complex, coherent nonlinear photonic devices with many degrees of freedom.

     
    more » « less
  4. Mamyshev oscillators produce high-performance pulses, but technical and practical issues render them unsuitable for widespread use. Here we present a Mamyshev oscillator with several key design features that enable self-starting operation and unprecedented performance and simplicity from an all-fiber laser. The laser generates 110 nJ pulses that compress to 40 fs and 80 nJ with a grating pair. The pulse energy and duration are both the best achieved by a femtosecond all-fiber laser to date, to our knowledge, and the resulting peak power of 1.5 MW is 20 times higher than that of prior all-fiber, self-starting lasers. The simplicity of the design, ease of use, and pulse performance make this laser an attractive tool for practical applications.

     
    more » « less
  5. We present a spatiotemporally mode-locked Mamyshev oscillator. A wide variety of multimode mode-locked states, with varying degrees of spatiotemporal coupling, are observed. We find that some control of the modal content of the output beam is possible through the cavity design. Comparison of simulations with experiments indicates that spatiotemporal mode locking (STML) is enabled by nonlinear intermodal interactions and spatial filtering, along with the Mamyshev mechanism. This work represents a first, to the best of our knowledge, exploration of STML in an oscillator with a Mamyshev saturable absorber.

     
    more » « less
  6. null (Ed.)
    Abstract Advancements in computational capabilities along with the possibility of accessing high power levels have stimulated a reconsideration of multimode fibers. Multimode fibers are nowadays intensely pursued in terms of addressing longstanding issues related to information bandwidth and implementing new classes of high-power laser sources. In addition, the multifaceted nature of this platform, arising from the complexity associated with hundreds and thousands of interacting modes, has provided a fertile ground for observing novel physical effects. However, this same complexity has introduced a formidable challenge in understanding these newly emerging physical phenomena. Here, we provide a comprehensive theory capable of explaining the distinct Cherenkov radiation lines produced during multimode soliton fission events taking place in nonlinear multimode optical fibers. Our analysis reveals that this broadband dispersive wave emission is a direct byproduct of the nonlinear merging of the constituent modes comprising the resulting multimode soliton entities, and is possible in both the normal and anomalous dispersive regions. These theoretical predictions are experimentally and numerically corroborated in both parabolic and step-index multimode silica waveguides. Effects arising from different soliton modal compositions can also be accounted for, using this model. At a more fundamental level, our results are expected to further facilitate our understanding of the underlying physics associated with these complex “many-body” nonlinear processes. 
    more » « less
  7. Kerr beam cleaning in graded-index multimode fiber has been investigated in experiments with sub-nanosecond pulses and in experiments with femtosecond pulses at wavelengths where the dispersion is normal. We report a theoretical and experimental study of this effect with femtosecond pulses and anomalous dispersion. In this regime, only weak beam cleaning is observed experimentally, along with strong temporal evolution of the pulse. Numerical simulations exhibit the qualitative trends of the experiments.

     
    more » « less