skip to main content

Title: Disease or drought: environmental fluctuations release zebra from a potential pathogen-triggered ecological trap
When a transmission hotspot for an environmentally persistent pathogen establishes in otherwise high-quality habitat, the disease may exert a strong impact on a host population. However, fluctuating environmental conditions lead to heterogeneity in habitat quality and animal habitat preference, which may interrupt the overlap between selected and risky habitats. We evaluated spatio-temporal patterns in anthrax mortalities in a plains zebra ( Equus quagga ) population in Etosha National Park, Namibia, incorporating remote-sensing and host telemetry data. A higher proportion of anthrax mortalities of herbivores was detected in open habitats than in other habitat types. Resource selection functions showed that the zebra population shifted habitat selection in response to changes in rainfall and vegetation productivity. Average to high rainfall years supported larger anthrax outbreaks, with animals congregating in preferred open habitats, while a severe drought forced animals into otherwise less preferred habitats, leading to few anthrax mortalities. Thus, the timing of anthrax outbreaks was congruent with preference for open plains habitats and a corresponding increase in pathogen exposure. Given shifts in habitat preference, the overlap in high-quality habitat and high-risk habitat is intermittent, reducing the adverse consequences for the population.
Authors:
; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2106221 1922560
Publication Date:
NSF-PAR ID:
10260016
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1952
Page Range or eLocation-ID:
20210582
ISSN:
0962-8452
Sponsoring Org:
National Science Foundation
More Like this
  1. Bacillus anthracis , the etiological agent of anthrax, is a well-established model organism. For B. anthracis and most other infectious diseases, knowledge regarding transmission and infection parameters in natural systems, in large part, comprises data gathered from closely controlled laboratory experiments. Fatal, natural anthrax infections transmit the bacterium through new host−pathogen contacts at carcass sites, which can occur years after death of the previous host. For the period between contact and death, all of our knowledge is based upon experimental data from domestic livestock and laboratory animals. Here we use a noninvasive method to explore the dynamics of anthrax infections,more »by evaluating the terminal diversity of B. anthracis in anthrax carcasses. We present an application of population genetics theory, specifically, coalescence modeling, to intrainfection populations of B. anthracis to derive estimates for the duration of the acute phase of the infection and effective population size converted to the number of colony-forming units establishing infection in wild plains zebra ( Equus quagga ). Founding populations are small, a few colony-forming units, and infections are rapid, lasting roughly between 1 d and 3 d in the wild. Our results closely reflect experimental data, showing that small founding populations progress acutely, killing the host within days. We believe this method is amendable to other bacterial diseases from wild, domestic, and human systems.« less
  2. Abstract Habitat alteration can influence suitability, creating ecological traps where habitat preference and fitness are mismatched. Despite their importance, ecological traps are notoriously difficult to identify and their impact on host–pathogen dynamics remains largely unexplored. Here we assess individual bat survival and habitat preferences in the midwestern United States before, during, and after the invasion of the fungal pathogen that causes white-nose syndrome. Despite strong selection pressures, most hosts continued to select habitats where disease severity was highest and survival was lowest, causing continued population declines. However, some individuals used refugia where survival was higher. Over time, a higher proportionmore »of the total population used refugia than before pathogen arrival. Our results demonstrate that host preferences for habitats with high disease-induced mortality can create ecological traps that threaten populations, even in the presence of accessible refugia.« less
  3. Human activity around the globe is a growing source of selection pressure on animal behavior and communication systems. Some animals can modify their vocalizations to avoid masking from anthropogenic noise. However, such modifications can also affect the salience of these vocalizations in functional contexts such as competition and mate choice. Such is the case in the well-studied Nuttall's white-crowned sparrow ( Zonotrichia leucophrys nuttalli ), which lives year-round in both urban San Francisco and nearby rural Point Reyes. A performance feature of this species' song is salient in territorial defense, such that higher performance songs elicit stronger responses in simulatedmore »territorial intrusions; but songs with lower performance values transmit better in anthropogenic noise. A key question then is whether vocal performance signals male quality and ability to obtain high quality territories in urban populations. We predicted white-crowned sparrows with higher vocal performance will be in better condition and will tend to hold territories with lower noise levels and more species-preferred landscape features. Because white-crowned sparrows are adapted to coastal scrub habitats, we expect high quality territories to contain lower and less dense canopies, less drought, more greenness, and more flat open ground for foraging. To test our predictions, we recorded songs and measured vocal performance and body condition (scaled mass index and fat score) for a set of urban and rural birds ( N = 93), as well as ambient noise levels on their territories. Remote sensing metrics measured landscape features of territories, such as drought stress (NDWI), greenness (NDVI), mean canopy height, maximum height, leaf area density (understory and canopy), slope, and percent bare ground for a 50 m radius on each male territory. We did not find a correlation between body condition and performance but did find a relationship between noise levels and performance. Further, high performers held territories with lower canopies and less dense vegetation, which are species-preferred landscape features. These findings link together fundamental aspects of sexual selection in that habitat quality and the quality of sexually selected signals appear to be associated: males that have the highest performing songs are defending territories of the highest quality.« less
  4. Pathogen management strategies in wildlife are typically accompanied by an array of uncertainties such as the efficacy of vaccines or potential unintended consequences of interventions. In the context of such uncertainties, models of disease transmission can provide critical insight for optimizing pathogen management, especially for species of conservation concern. The endangered Florida panther experienced an outbreak of feline leukaemia virus (FeLV) in 2002–2004, and continues to be affected by this deadly virus. Ongoing management efforts aim to mitigate the effects of FeLV on panthers, but with limited information about which strategies may be most effective and efficient. We used amore »simulation-based approach to determine optimal FeLV management strategies in panthers. We simulated the use of proactive FeLV management strategies (i.e. proactive vaccination) and several reactive strategies, including reactive vaccination and test-and-removal. Vaccination strategies accounted for imperfect vaccine-induced immunity, specifically partial immunity in which all vaccinates achieve partial pathogen protection. We compared the effectiveness of these different strategies in mitigating the number of FeLV mortalities and the duration of outbreaks. Results showed that inadequate proactive vaccination can paradoxically increase the number of disease-induced mortalities in FeLV outbreaks. These effects were most likely due to imperfect vaccine immunity causing vaccinates to serve as a semi-susceptible population, thereby allowing outbreaks to persist in circumstances otherwise conducive to fadeout. Combinations of proactive vaccination with reactive test-and-removal or vaccination, however, had a synergistic effect in reducing the impacts of FeLV outbreaks, highlighting the importance of using mixed strategies in pathogen management. Synthesis and applications. Management-informed disease simulations are an important tool for identifying unexpected negative consequences and synergies among pathogen management strategies. In particular, we find that imperfect vaccine-induced immunity necessitates further consideration to avoid unintentionally worsening epidemics in some conditions. However, mixing proactive and reactive interventions can improve pathogen control while mitigating uncertainties associated with imperfect interventions.« less
  5. Anthropogenic landscape modification such as urbanization can expose wildlife to toxicants, with profound behavioural and health effects. Toxicant exposure can alter the local transmission of wildlife diseases by reducing survival or altering immune defence. However, predicting the impacts of pathogens on wildlife across their ranges is complicated by heterogeneity in toxicant exposure across the landscape, especially if toxicants alter wildlife movement from toxicant-contaminated to uncontaminated habitats. We developed a mechanistic model to explore how toxicant effects on host health and movement propensity influence range-wide pathogen transmission, and zoonotic exposure risk, as an increasing fraction of the landscape is toxicant-contaminated. Whenmore »toxicant-contaminated habitat is scarce on the landscape, costs to movement and survival from toxicant exposure can trap infected animals in contaminated habitat and reduce landscape-level transmission. Increasing the proportion of contaminated habitat causes host population declines from combined effects of toxicants and infection. The onset of host declines precedes an increase in the density of infected hosts in contaminated habitat and thus may serve as an early warning of increasing potential for zoonotic spillover in urbanizing landscapes. These results highlight how sublethal effects of toxicants can determine pathogen impacts on wildlife populations that may not manifest until landscape contamination is widespread.« less