skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the upper tail problem for random hypergraphs
The upper tail problem in a random graph asks to estimate the probability that the number of copies of some fixed subgraph in an Erdős‐Rényi random graph exceeds its expectation by some constant factor. There has been much exciting recent progress on this problem. We study the corresponding problem for hypergraphs, for which less is known about the large deviation rate. We present new phenomena in upper tail large deviations for sparse random hypergraphs that are not seen in random graphs. We conjecture a formula for the large deviation rate, that is, the first order asymptotics of the log‐probability that the number of copies of fixed subgraphHin a sparse Erdős‐Rényi randomk‐uniform hypergraph exceeds its expectation by a constant factor. This conjecture turns out to be significantly more intricate compared to the case for graphs. We verify our conjecture when the fixed subgraphHbeing counted is a clique, as well as whenHis the 3‐uniform 6‐vertex 4‐edge hypergraph consisting of alternating faces of an octahedron, where new techniques are required.  more » « less
Award ID(s):
1764176
PAR ID:
10260107
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
58
Issue:
2
ISSN:
1042-9832
Page Range / eLocation ID:
p. 179-220
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a fixed graph H, what is the (exponentially small) probability that the number XHof copies of Hin the binomial random graph Gn,pis at least twice its mean? Studied intensively since the mid 1990s, this so‐called infamous upper tail problem remains a challenging testbed for concentration inequalities. In 2011 DeMarco and Kahn formulated an intriguing conjecture about the exponential rate of decay of for fixed ε > 0. We show that this upper tail conjecture is false, by exhibiting an infinite family of graphs violating the conjectured bound. 
    more » « less
  2. We develop a quantitative large deviations theory for random hypergraphs, which rests on tensor decomposition and counting lemmas under a novel family of cut-type norms. As our main application, we obtain sharp asymptotics for joint upper and lower tails of homomorphism counts in the r-uniform Erdo ̋s–Rényi hypergraph for any fixed r≥2, generalizing and improving on previous results for the Erdo ̋s–Rényi graph (r=2). The theory is sufficiently quantitative to allow the density of the hypergraph to vanish at a polynomial rate, and additionally yields tail asymptotics for other nonlinear functionals, such as induced homomorphism counts. 
    more » « less
  3. Abstract Sidorenko’s conjecture states that, for all bipartite graphs $$H$$, quasirandom graphs contain asymptotically the minimum number of copies of $$H$$ taken over all graphs with the same order and edge density. While still open for graphs, the analogous statement is known to be false for hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does not hold for a particular $$r$$-partite $$r$$-uniform hypergraph $$H$$, then it is possible to improve the standard lower bound, coming from the probabilistic deletion method, for its extremal number $$\textrm{ex}(n,H)$$, the maximum number of edges in an $$n$$-vertex $$H$$-free $$r$$-uniform hypergraph. With this application in mind, we find a range of new counterexamples to the conjecture for hypergraphs, including all linear hypergraphs containing a loose triangle and all $$3$$-partite $$3$$-uniform tight cycles. 
    more » « less
  4. ABSTRACT Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem that has been extensively studied in recent years. We study a hypergraph version of the problem. Let denote the ‐uniform Erdős–Rényi hypergraph model with vertices and edge density . We consider detecting the presence of a planted subhypergraph in a hypergraph, where and . Focusing on tests that are degree‐ polynomials of the entries of the adjacency tensor, we determine the threshold between the easy and hard regimes for the detection problem. More precisely, for , the threshold is given by , and for , the threshold is given by . Our results are already new in the graph case , as we consider the subtlelog‐density regimewhere hardness based on average‐case reductions is not known. Our proof of low‐degree hardness is based on aconditionalvariant of the standard low‐degree likelihood calculation. 
    more » « less
  5. One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $$n$$-vertex graph with more than $$\frac{k-1}{2}n$$ edges contains any $$k$$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $$r$$-uniform hypergraph, i.e., a hypergraph where each edge contains $$r$$ vertices. A tight tree is an $$r$$-uniform hypergraph such that there is an ordering $$v_1,\ldots,v_n$$ of its its vertices with the following property: the vertices $$v_1,\ldots,v_r$$ form an edge and for every $i>r$, there is a single edge $$e$$ containing the vertex $$v_i$$ and $r-1$ of the vertices $$v_1,\ldots,v_{i-1}$$, and $$e\setminus\{v_i\}$$ is a subset of one of the edges consisting only of vertices from $$v_1,\ldots,v_{i-1}$$. The conjecture of Kalai asserts that every $$n$$-vertex $$r$$-uniform hypergraph with more than $$\frac{k-1}{r}\binom{n}{r-1}$$ edges contains every $$k$$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $$n$$ for every $$r$$ and $$k$$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $$r$$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $$r$$ and $$k$$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices. 
    more » « less