The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a beam impinging on a transversely polarized ammonia target. Combining the data of both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects. These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan process with deep inelastic scattering. Also, within the context of model predictions, the observed transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function. Published by the American Physical Society2024
more »
« less
The Drell-Yan process with pions and polarized nucleons
A bstract The Drell-Yan process provides important information on the internal struc- ture of hadrons including transverse momentum dependent parton distribution functions (TMDs). In this work we present calculations for all leading twist structure functions de- scribing the pion induced Drell-Yan process. The non-perturbative input for the TMDs is taken from the light-front constituent quark model, the spectator model, and available parametrizations of TMDs extracted from the experimental data. TMD evolution is im- plemented at Next-to-Leading Logarithmic precision for the first time for all asymmetries. Our results are compatible with the first experimental information, help to interpret the data from ongoing experiments, and will allow one to quantitatively assess the models in future when more precise data will become available.
more »
« less
- PAR ID:
- 10262196
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 2
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract We perform global fit to the quark Sivers function within the transverse momentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS, HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from W/Z boson at RHIC. This extraction is performed at next-to-leading order (NLO) and next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement between our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton pair production, while tension arises when trying to describe the spin asymmetries of W/Z bosons at RHIC. We carefully assess the situation, and we study in details the impact of the RHIC data and their implications through different ways of performing the fit. In addition, we find that the quality of the description of W/Z vector boson asymmetry data could be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual TMD evolution. We present discussion on this and the implications for measurements of the transverse-spin asymmetries at the future Electron Ion Collider.more » « less
-
null (Ed.)A bstract We perform a global fit of the available polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS), polarized pion-induced Drell-Yan (DY) and W ± /Z boson production data at N 3 LO and NNLO accuracy of the Transverse Momentum Dependent (TMD) evolution, and extract the Sivers function for u , d , s and for sea quarks. The Qiu-Sterman function is determined in a model independent way via the operator product expansion from the extracted Sivers function. The analysis is supplemented by additional studies, such as the estimation of applicability region, the impact of the unpolarized distributions’ uncertainties, the universality of the Sivers functions, positivity constraints, the significance of the sign-change relation, and the comparison with the existing extractions.more » « less
-
The violation of the Lam-Tung relation in the high- region of the Drell-Yan process at the LHC presents a longstanding discrepancy with the standard model prediction at accuracy. In this paper, we employed a model-independent analysis to investigate this phenomenon within the framework of the standard model effective field theory (SMEFT). Our findings revealed that the leading contributions from SMEFT to this violation appear at the order with accuracy in quantum chromodynamics (QCD) interaction. Notably, we demonstrated that the quadratic effect of dimension-6 dipole operators, associated with the boson, dominates the breaking effects induced by various dimension-6 and dimension-8 operators. This provides a possible explanation for the observed discrepancy with the Standard Model predictions at the LHC. Furthermore, the breaking effects could also serve as a powerful tool for constraining -boson dipole interactions, highlighting their importance among potential sources of new physics in the Drell-Yan process. Published by the American Physical Society2025more » « less
-
null (Ed.)We showcase the calculation of the master integrals needed for the two loop mixed QCD-QED virtual corrections to the neutral current Drell-Yan process (𝑞𝑞 → l+l−). After establishing a basis of 51 master integrals, we cast the latter into canonical form by using the Magnus algorithm. The dependence on the lepton mass is then expanded such that potentially large logarithmic contributions are kept. After determining all boundary constants, we give the coefficients of the Taylor series around four space-time dimensions in terms of generalized polylogarithms up to weight four.more » « less
An official website of the United States government

