Abstract This study examines historical simulations of ENSO in the E3SM-1-0, CESM2, and GFDL-CM4 climate models, provided by three leading U.S. modeling centers as part of the Coupled Model Intercomparison Project phase 6 (CMIP6). These new models have made substantial progress in simulating ENSO’s key features, including: amplitude; timescale; spatial patterns; phase-locking; spring persistence barrier; and recharge oscillator dynamics. However, some important features of ENSO are still a challenge to simulate. In the central and eastern equatorial Pacific, the models’ weaker-than-observed subsurface zonal current anomalies and zonal temperature gradient anomalies serve to weaken the nonlinear zonal advection of subsurface temperatures, leading to insufficient warm/cold asymmetry of ENSO’s sea surface temperature anomalies (SSTA). In the western equatorial Pacific, the models’ excessive simulated zonal SST gradients amplify their zonal temperature advection, causing their SSTA to extend farther west than observed. The models underestimate both ENSO’s positive dynamic feedbacks (due to insufficient zonal wind stress responses to SSTA) and its thermodynamic damping (due to insufficient convective cloud shading of eastern Pacific SSTA during warm events); compensation between these biases leads to realistic linear growth rates for ENSO, but for somewhat unrealistic reasons. The models also exhibit stronger-than-observed feedbacks onto eastern equatorial Pacific SSTAs from thermocline depth anomalies, which accelerates the transitions between events and shortens the simulated ENSO period relative to observations. Implications for diagnosing and simulating ENSO in climate models are discussed.
more »
« less
Cloud Radiative Feedbacks and El Niño–Southern Oscillation
Abstract Cloud radiative feedbacks are disabled via “cloud-locking” in the Community Earth System Model, version 1.2 (CESM1.2), to result in a shift in El Niño–Southern Oscillation (ENSO) periodicity from 2–7 years to decadal time scales. We hypothesize that cloud radiative feedbacks may impact the periodicity in three ways: by 1) modulating heat flux locally into the equatorial Pacific subsurface through negative shortwave cloud feedback on sea surface temperature anomalies (SSTA), 2) damping the persistence of subtropical southeast Pacific SSTA such that the South Pacific meridional mode impacts the duration of ENSO events, or 3) controlling the meridional width of off-equatorial westerly winds, which impacts the periodicity of ENSO by initiating longer Rossby waves. The result of cloud-locking in CESM1.2 contrasts that of another study, which found that cloud-locking in a different global climate model led to decreased ENSO magnitude across all time scales due to a lack of positive longwave feedback on the anomalous Walker circulation. CESM1.2 contains this positive longwave feedback on the anomalous Walker circulation, but either its influence on the surface is decoupled from ocean dynamics or the feedback is only active on interannual time scales. The roles of cloud radiative feedbacks in ENSO in other global climate models are additionally considered. In particular, it is shown that one cannot predict the role of cloud radiative feedbacks in ENSO through a multimodel diagnostic analysis. Instead, they must be directly altered.
more »
« less
- Award ID(s):
- 1650209
- PAR ID:
- 10263914
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 32
- Issue:
- 15
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 4661 to 4680
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In observations, the boreal winter El Niño—Southern Oscillation (ENSO) phase-locking phenomenon is evident in the central-eastern Pacific. In the far eastern equatorial Pacific (FEP) and South American coastal regions, however, the peak of sea surface temperature anomalies (SSTA) tends to occur in the boreal summer, with fewer winter peak events. By separating the direct ENSO forcing from the FEP SSTA, we found that the summer peak preference is contributed by the residual SSTA component, while the ENSO forcing provides only a small probability of winter peak. The dynamics of FEP SSTA phase-locking in observations and its biases in the climate models are investigated by adopting a linear stochastic-dynamical model. In observations, the summer phase-locking of FEP SSTA is controlled by the seasonal modulation of the SSTA damping process. In contrast, in the climate models the strength of FEP SSTA phase-locking is much smaller than observed due to the overly negative SSTA damping rate.more » « less
-
Abstract The contributions of different oceanic feedbacks to the El Niño–Southern Oscillation (ENSO) phase‐locking are examined by deriving ENSO dynamics based on the recharge‐discharge framework. In observations, the significant winter preference of the ENSO peak is determined by a strong seasonal modulation of SST growth rate, which is controlled by the zonal advective and thermodynamic feedbacks. However, the majority of climate models fail to simulate ENSO phase‐locking because the contribution of zonal advective feedback to the seasonal modulation of the SST growth rate is much smaller compared to observations. The weak annual cycle of the SST‐current coupling coefficient and small annual mean of the negative climatological zonal SST gradient are two factors contributing to the weak‐biased seasonality of zonal advective feedback. Further analysis shows that the Niño3.4 SSTA has better phase‐locking performance than Niño3 SSTA in the climate models due to the better simulation of zonal advection feedback in the Niño3.4 region.more » « less
-
Abstract The cause of southward shift of anomalous zonal wind in the central equatorial Pacific (CEP) during ENSO mature winter was investigated through observational analyses and numerical model experiments. Based on an antisymmetric zonal momentum budget diagnosis using daily ERA-Interim data, a two-step physical mechanism is proposed. The first step involves advection of the zonal wind anomaly by the climatological mean meridional wind. The second step involves the development of an antisymmetric mode in the CEP, which promotes a positive contribution to the observed zonal wind tendency by the pressure gradient and Coriolis forces. Two positive feedbacks are responsible for the growth of the antisymmetric mode. The first involves the moisture–convection–circulation feedback, and the second involves the wind–evaporation–SST feedback. General circulation model experiments further demonstrated that the boreal winter background state is critical in generating the southward shift, and a northward shift of the zonal wind anomaly is found when the same SST anomaly is specified in boreal summer background state.more » « less
-
Abstract Previous studies have shown that nonlinear atmospheric interactions between ENSO and the warm pool annual cycle generates a combination mode (C-mode), which is responsible for the termination of strong El Niño events and the development of the anomalous anticyclone over the western North Pacific (WNP). However, the C-mode has experienced a remarkable decadal change in its characteristics around the early 2000s. The C-mode in both pre- and post-2000 exhibits its characteristic anomalous atmospheric circulation meridional asymmetry but with somewhat different spatial structures and time scales. During 1979–99, the C-mode pattern featured prominent westerly surface wind anomalies in the southeastern tropical Pacific and anticyclonic anomalies over the WNP. In contrast, the C-mode-associated westerly anomalies were shifted farther westward to the central Pacific and the WNP anticyclone was farther westward extended and weaker after 2000. These different C-mode patterns were accompanied by distinct climate impacts over the Indo-Pacific region. The decadal differences of the C-mode are tightly connected with the ENSO regime shift around 2000; that is, the occurrence of central Pacific (CP) El Niño events with quasi-biennial and decadal periodicities increased while the occurrence of eastern Pacific (EP) El Niño events with quasi-quadrennial periodicity decreased. The associated near-annual combination tone periodicities of the C-mode also changed in accordance with these changes in the dominant ENSO frequency between the two time periods. Numerical model experiments further confirm the impacts of the ENSO regime shift on the C-mode characteristics. These results have important implications for understanding the C-mode dynamics and improving predictions of its climate impacts.more » « less
An official website of the United States government

