skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The mechanism of boreal summer SSTA phase-locking in the far eastern Pacific
Abstract In observations, the boreal winter El Niño—Southern Oscillation (ENSO) phase-locking phenomenon is evident in the central-eastern Pacific. In the far eastern equatorial Pacific (FEP) and South American coastal regions, however, the peak of sea surface temperature anomalies (SSTA) tends to occur in the boreal summer, with fewer winter peak events. By separating the direct ENSO forcing from the FEP SSTA, we found that the summer peak preference is contributed by the residual SSTA component, while the ENSO forcing provides only a small probability of winter peak. The dynamics of FEP SSTA phase-locking in observations and its biases in the climate models are investigated by adopting a linear stochastic-dynamical model. In observations, the summer phase-locking of FEP SSTA is controlled by the seasonal modulation of the SSTA damping process. In contrast, in the climate models the strength of FEP SSTA phase-locking is much smaller than observed due to the overly negative SSTA damping rate.  more » « less
Award ID(s):
2219257
PAR ID:
10530664
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
6
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Tropical North Atlantic (TNA) is characterized by significant interannual variability in sea surface temperature (SST), which is phase‐locked to the boreal spring. In this study, the phase‐locking of TNA is investigated by adopting a linear stochastic‐dynamical model (SDM) using seasonally modulated TNA feedbacks together with the seasonal modulation of ENSO forcing. In the observations, the role of local TNA feedbacks and ENSO forcing in TNA phase‐locking are equivalently important with both preferring the peak of TNA variability to appear in the boreal spring. Besides, the seasonal modulation of TNA feedbacks and ENSO forcing strength are both mainly controlled by thermodynamic processes. In most climate models, the contribution of ENSO on TNA phase‐locking is weaker than that in observations. The strength of ENSO‐related TNA phase‐locking is highly correlated with the relationship between ENSO and TNA, which is mainly determined by the amplitude of ENSO and its teleconnection patterns. 
    more » « less
  2. Abstract This study examines historical simulations of ENSO in the E3SM-1-0, CESM2, and GFDL-CM4 climate models, provided by three leading U.S. modeling centers as part of the Coupled Model Intercomparison Project phase 6 (CMIP6). These new models have made substantial progress in simulating ENSO’s key features, including: amplitude; timescale; spatial patterns; phase-locking; spring persistence barrier; and recharge oscillator dynamics. However, some important features of ENSO are still a challenge to simulate. In the central and eastern equatorial Pacific, the models’ weaker-than-observed subsurface zonal current anomalies and zonal temperature gradient anomalies serve to weaken the nonlinear zonal advection of subsurface temperatures, leading to insufficient warm/cold asymmetry of ENSO’s sea surface temperature anomalies (SSTA). In the western equatorial Pacific, the models’ excessive simulated zonal SST gradients amplify their zonal temperature advection, causing their SSTA to extend farther west than observed. The models underestimate both ENSO’s positive dynamic feedbacks (due to insufficient zonal wind stress responses to SSTA) and its thermodynamic damping (due to insufficient convective cloud shading of eastern Pacific SSTA during warm events); compensation between these biases leads to realistic linear growth rates for ENSO, but for somewhat unrealistic reasons. The models also exhibit stronger-than-observed feedbacks onto eastern equatorial Pacific SSTAs from thermocline depth anomalies, which accelerates the transitions between events and shortens the simulated ENSO period relative to observations. Implications for diagnosing and simulating ENSO in climate models are discussed. 
    more » « less
  3. Abstract The contributions of different oceanic feedbacks to the El Niño–Southern Oscillation (ENSO) phase‐locking are examined by deriving ENSO dynamics based on the recharge‐discharge framework. In observations, the significant winter preference of the ENSO peak is determined by a strong seasonal modulation of SST growth rate, which is controlled by the zonal advective and thermodynamic feedbacks. However, the majority of climate models fail to simulate ENSO phase‐locking because the contribution of zonal advective feedback to the seasonal modulation of the SST growth rate is much smaller compared to observations. The weak annual cycle of the SST‐current coupling coefficient and small annual mean of the negative climatological zonal SST gradient are two factors contributing to the weak‐biased seasonality of zonal advective feedback. Further analysis shows that the Niño3.4 SSTA has better phase‐locking performance than Niño3 SSTA in the climate models due to the better simulation of zonal advection feedback in the Niño3.4 region. 
    more » « less
  4. Abstract The Sea Surface Temperature Anomaly (SSTA) in tropical Atlantic during boreal spring and summer shows two dominant modes: a basin-warming and a meridional dipole mode, respectively. Observational and coupled model simulations indicate that the former induces a Pacific La Niña in the succeeding winter whereas the latter cannot. The basin-warming forcing induces a La Niña through a Kelvin wave response and the associated wind-evaporation-SST-convection (WESC) feedback over the northern Indian Ocean (NIO) and Maritime Continent (MC). Anomalous Kelvin wave easterly interacts with the monsoonal westerly, leading to a warm SSTA and a northwest-southeast oriented heating anomaly in NIO/MC, which further induces easterly and cold SSTA over the equatorial Pacific. In contrast, the dipole forcing has little impact on the Indian and Pacific Oceans due to the offsetting of the Kelvin wave to the asymmetric Atlantic heating. Further observational and modeling studies towards the Tropical North Atlantic (TNA) and Equatorial Atlantic (EA) SSTA modes indicate that the TNA (EA) forcing induces a CP- (EP-) type ENSO. In both cases, the Kelvin wave response and the WESC feedback over the NIO/MC are important in conveying the Atlantic’s impact. The difference lies in distinctive Rossby wave responses – A marked westerly anomaly appears in the equatorial eastern Pacific (EEP) for the TNA forcing (due to its westward location) while no significant wind response is observed in EEP for the EA forcing. The westerly anomaly prevents a cooling tendency in EEP through anomalous zonal and vertical advection according to a mixed-layer heat budget analysis. 
    more » « less
  5. The El Niño Southern Oscillation (ENSO) phenomenon, manifested by the great swings of large-scale sea surface temperature (SST) anomalies over the equatorial central to eastern Pacific oceans, is a major source of interannual global shifts in climate patterns and weather activities. ENSO’s SST anomalies exhibit remarkable spatiotemporal pattern diversity (STPD), with their spatial pattern diversity dominated by Central Pacific (CP) and Eastern Pacific (EP) El Niño events and their temporal diversity marked by different timescales and intermittency in these types of events. By affecting various Earth system components, ENSO and its STPD yield significant environmental, ecological, economic, and societal impacts over the globe. The basic dynamics of ENSO as a canonical oscillator generated by coupled ocean–atmosphere interactions in the tropical Pacific have been largely understood. A minimal simple conceptual model such as the recharge oscillator paradigm provides means for quantifying the linear and nonlinear seasonally modulated growth rate and frequency together with ENSO’s state-dependent noise forcing for understanding ENSO’s amplitude and periodicity, boreal winter-time phase locking, and warm/cold phase asymmetry. However, the dynamical mechanisms explaining the key features of ENSO STPD associated with CP and EP events remain to be better understood. This article provides a summary of the recent active research on the dynamics of ENSO STPD together with discussions on challenges and outlooks for theoretical, diagnostic, and numerical modeling approaches to advance our understanding and modeling of ENSO, its STPD, and their broad impacts. 
    more » « less