skip to main content


Title: A SAMI and MaNGA view on the stellar kinematics of galaxies on the star-forming main sequence
ABSTRACT Galaxy internal structure growth has long been accused of inhibiting star formation in disc galaxies. We investigate the potential physical connection between the growth of dispersion-supported stellar structures (e.g. classical bulges) and the position of galaxies on the star-forming main sequence at z ∼ 0. Combining the might of the SAMI and MaNGA galaxy surveys, we measure the λRe spin parameter for 3289 galaxies over $9.5 \lt \log M_{\star } [\rm {M}_{\odot }] \lt 12$. At all stellar masses, galaxies at the locus of the main sequence possess λRe values indicative of intrinsically flattened discs. However, above $\log M_{\star }[\rm {M}_{\odot }]\sim 10.5$ where the main sequence starts bending, we find tantalizing evidence for an increase in the number of galaxies with dispersion-supported structures, perhaps suggesting a connection between bulges and the bending of the main sequence. Moving above the main sequence, we see no evidence of any change in the typical spin parameter in galaxies once gravitationally interacting systems are excluded from the sample. Similarly, up to 1 dex below the main sequence, λRe remains roughly constant and only at very high stellar masses ($\log M_{\star }[\rm {M}_{\odot }]\gt 11$), do we see a rapid decrease in λRe once galaxies decline in star formation activity. If this trend is confirmed, it would be indicative of different quenching mechanisms acting on high- and low-mass galaxies. The results suggest that whilst a population of galaxies possessing some dispersion-supported structure is already present on the star-forming main sequence, further growth would be required after the galaxy has quenched to match the kinematic properties observed in passive galaxies at z ∼ 0.  more » « less
Award ID(s):
2009416
NSF-PAR ID:
10265907
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4992 to 5005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$), no additional environmental quenching is required.

     
    more » « less
  2. ABSTRACT

    We employ a series of high-resolution zoom-in cosmological simulations to analyse the emerging morphology of main galaxies in dark matter haloes at z ≳ 2. We choose haloes of similar masses, ${\rm log}\, M_{\rm vir}/{\rm M_\odot }\sim 11.65\pm 0.05$, at the target zf = 6, 4, and 2. The rationale for this choice allows us to analyse how the different growth rate in these haloes propagates down to galaxy scales, affecting their basic parameters. Halos were embedded in high/low overdensity regions, and two versions of a galactic wind feedback were employed. Our main results are: (1) Although our galaxies evolve in different epochs, their global parameters remain within narrow range. Their morphology, kinematics, and stellar populations differ substantially, yet all host sub-kpc stellar bars; (2) The star formation rates appear higher for larger zf; (3) Bulges and stellar spheroids were separated by stellar kinematics, discy bulges were revealed using the Sersic method and photometry.The bulge-to-total mass ratios appear independent of the last merger time for all zf. The spheroid-to-total mas ratios lie within ∼0.5–0.8; (4) The synthetic redshifted, pixelized, and PSF-degraded JWST images allow detection of stellar discs at all zf. (5) Based on the kinematic decomposition, rotational support in discs depends on the feedback type, but increases with decreasing zf; (6) Finally, the ALMA images detect discs at all zf, but spiral structure is detectable in zf = 2 galaxies. Moreover, galaxies follow the Tully–Fisher relation, being separated only by the galactic wind feedback.

     
    more » « less
  3. ABSTRACT

    We use two independent galaxy-formation simulations, flares, a cosmological hydrodynamical simulation, and shark, a semi-analytic model, to explore how well the JWST will be able to uncover the existence and parameters of the star-forming main sequence (SFS) at z = 5 → 10, i.e. shape, scatter, normalization. Using two independent simulations allows us to isolate predictions (e.g. stellar mass, star formation rate, SFR, luminosity functions) that are robust to or highly dependent on the implementation of the physics of galaxy formation. Both simulations predict that JWST can observe ≥70–90 per cent (for shark and flares, respectively) of galaxies up to z ∼ 10 (down to stellar masses of ${\approx}10^{8.3}\rm M_{\odot }$ and SFRs of ${\approx}10^{0.5}{\rm M}_{\odot }\,{\rm yr}^{-1}$) in modest integration times and given current proposed survey areas (e.g. the Web COSMOS 0.6 deg2) to accurately constrain the parameters of the SFS. Although both simulations predict qualitatively similar distributions of stellar mass and SFR. There are important quantitative differences, such as the abundance of massive, star-forming galaxies with flares predicting a higher abundance than shark; the early onset of quenching as a result of black hole growth in flares (at z ≈ 8), not seen in shark until much lower redshifts; and the implementation of synthetic photometry with flares predicting more JWST-detected galaxies (∼90 per cent) than shark (∼70 per cent) at z = 10. JWST observations will distinguish between these models, leading to a significant improvement upon our understanding of the formation of the very first galaxies.

     
    more » « less
  4. ABSTRACT

    We use the simba cosmological galaxy formation simulation to investigate the relationship between major mergers ($\lesssim$4:1), starbursts, and galaxy quenching. Mergers are identified via sudden jumps in stellar mass M* well above that expected from in situ star formation, while quenching is defined as going from specific star formation rate (sSFR) $\gt t_{\rm H}^{-1}$ to $\lt 0.2t_{\rm H}^{-1}$, where tH is the Hubble time. At z ≈ 0–3, mergers show ∼2–3× higher SFR than a mass-matched sample of star-forming galaxies, but globally represent $\lesssim 1{{\ \rm per\ cent}}$ of the cosmic SF budget. At low masses, the increase in SFR in mergers is mostly attributed to an increase in the H2 content, but for $M_*\gtrsim 10^{10.5} \,\mathrm{ M}_{\odot }$ mergers also show an elevated star formation efficiency suggesting denser gas within merging galaxies. The merger rate for star-forming galaxies shows a rapid increase with redshift, ∝(1 + z)3.5, but the quenching rate evolves much more slowly, ∝(1 + z)0.9; there are insufficient mergers to explain the quenching rate at $z\lesssim 1.5$. simba first quenches galaxies at $z\gtrsim 3$, with a number density in good agreement with observations. The quenching time-scales τq are strongly bimodal, with ‘slow’ quenchings (τq ∼ 0.1tH) dominating overall, but ‘fast’ quenchings (τq ∼ 0.01tH) dominating in M* ∼ 1010–1010.5 M$\odot$ galaxies, likely induced by simba’s jet-mode black hole feedback. The delay time distribution between mergers and quenching events suggests no physical connection to either fast or slow quenching. Hence, simba predicts that major mergers induce starbursts, but are unrelated to quenching in either fast or slow mode.

     
    more » « less
  5. null (Ed.)
    ABSTRACT We perform a consistent comparison of the mass and mass profiles of massive (M⋆ > 1011.4 M⊙) central galaxies at z ∼ 0.4 from deep Hyper Suprime-Cam (HSC) observations and from the Illustris, TNG100, and Ponos simulations. Weak lensing measurements from HSC enable measurements at fixed halo mass and provide constraints on the strength and impact of feedback at different halo mass scales. We compare the stellar mass function (SMF) and the Stellar-to-Halo Mass Relation (SHMR) at various radii and show that the radius at which the comparison is performed is important. In general, Illustris and TNG100 display steeper values of α where $M_{\star } \propto M_{\rm vir}^{\alpha }$. These differences are more pronounced for Illustris than for TNG100 and in the inner rather than outer regions of galaxies. Differences in the inner regions may suggest that TNG100 is too efficient at quenching in situ star formation at Mvir ≃ 1013 M⊙ but not efficient enough at Mvir ≃ 1014 M⊙. The outer stellar masses are in excellent agreement with our observations at Mvir ≃ 1013 M⊙, but both Illustris and TNG100 display excess outer mass as Mvir ≃ 1014 M⊙ (by ∼0.25 and ∼0.12 dex, respectively). We argue that reducing stellar growth at early times in $M_\star \sim 10^{9-10} \, \mathrm{M}_{\odot }$ galaxies would help to prevent excess ex-situ growth at this mass scale. The Ponos simulations do not implement AGN feedback and display an excess mass of ∼0.5 dex at r < 30 kpc compared to HSC which is indicative of overcooling and excess star formation in the central regions. The comparison of the inner profiles of Ponos and HSC suggests that the physical scale over which the central AGN limits star formation is r ≲ 20 kpc. Joint comparisons between weak lensing and galaxy stellar profiles are a direct test of whether simulations build and deposit galaxy mass in the correct dark matter haloes and thereby provide powerful constraints on the physics of feedback and galaxy growth. Our galaxy and weak lensing profiles are publicly available to facilitate comparisons with other simulations. 
    more » « less