skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
Abstract. Ocean–sea-ice coupled models constrained by various observations provide different ice thickness estimates in the Antarctic. We evaluatecontemporary monthly ice thickness from four reanalyses in the Weddell Sea: the German contribution of the project Estimating the Circulation and Climate ofthe Ocean Version 2 (GECCO2), the Southern Ocean State Estimate (SOSE), the Ensemble Kalman Filter system based on the Nucleus for European Modelling of the Ocean (NEMO-EnKF) and the Global Ice–Ocean Modeling and Assimilation System (GIOMAS). The evaluation is performed againstreference satellite and in situ observations from ICESat-1, Envisat, upward-looking sonars and visual ship-based sea-ice observations. Compared withICESat-1, NEMO-EnKF has the highest correlation coefficient (CC) of 0.54 and lowest root mean square error (RMSE) of 0.44 m. Compared within situ observations, SOSE has the highest CC of 0.77 and lowest RMSE of 0.72 m. All reanalyses underestimate ice thickness near the coast ofthe western Weddell Sea with respect to ICESat-1 and in situ observations even though these observational estimates may be biased low. GECCO2 andNEMO-EnKF reproduce the seasonal variation in first-year ice thickness reasonably well in the eastern Weddell Sea. In contrast, GIOMAS ice thicknessperforms best in the central Weddell Sea, while SOSE ice thickness agrees most with the observations from the southern coast of the Weddell Sea. Inaddition, only NEMO-EnKF can reproduce the seasonal evolution of the large-scale spatial distribution of ice thickness, characterized by the thickice shifting from the southwestern and western Weddell Sea in summer to the western and northwestern Weddell Sea in spring. We infer that the thickice distribution is correlated with its better simulation of northward ice motion in the western Weddell Sea. These results demonstrate thepossibilities and limitations of using current sea-ice reanalysis for understanding the recent variability of sea-ice volume in the Antarctic.  more » « less
Award ID(s):
1936222 1924388
PAR ID:
10267591
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
15
Issue:
1
ISSN:
1994-0424
Page Range / eLocation ID:
31 to 47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Global- and basin-scale ocean reanalyses are becoming easily accessible and are utilized widely to study the Southern Ocean. However, such ocean reanalyses are optimized to achieve the best model–data agreement for their entire model domains and their ability to simulate the Southern Ocean requires investigation. Here, we compare several ocean reanalyses (ECCOv4r5, ECCO LLC270, B-SOSE, and GECCO3) based on the Massachusetts Institute of Technology General Circulation Model (MITgcm) for the Southern Ocean. For the open ocean, the simulated time-mean hydrography and ocean circulation are similar to observations. The MITgcm-based ocean reanalyses show Antarctic Circumpolar Current (ACC) levels measuring approximately 149 ± 11 Sv. The simulated 2 °C isotherms are located in positions similar to the ACC and roughly represent the southern extent of the current. Simulated Weddell Gyre and Ross Gyre strengths are 51 ± 11 and 25 ± 8 Sv, respectively, which is consistent with observation-based estimates. However, our evaluation finds that the time evolution of the Southern Ocean is not well simulated in these ocean reanalyses. While observations showed little change in open-ocean properties in the Weddell and Ross gyres, all simulations showed larger trends, most of which are excessive warming. For the continental shelf region, all reanalyses are unable to reproduce observed hydrographic features, suggesting that the simulated physics determining on-shelf hydrography and circulation is not well represented. Nevertheless, ocean reanalyses are valuable resources and can be used for generating ocean lateral boundary conditions for regional high-resolution simulations. We recommend that future users of these ocean reanalyses pay extra attention if their studies target open-ocean Southern Ocean temporal changes or on-shelf processes. 
    more » « less
  2. Abstract Given the role played by the historical and extensive coverage of sea ice concentration (SIC) observations in reconstructing the long‐term variability of Antarctic sea ice, and the limited attention given to model‐dependent parameters in current sea ice data assimilation studies, this study focuses on enhancing the performance of the Data Assimilation System for the Southern Ocean in assimilating SIC through optimizing the localization and observation error estimate, and two assimilation experiments were conducted from 1979 to 2018. By comparing the results with the sea ice extent of the Southern Ocean and the sea ice thickness in the Weddell Sea, it becomes evident that the experiment with optimizations outperforms that without optimizations due to achieving more reasonable error estimates. Investigating uncertainties of the sea ice volume anomaly modeling reveals the importance of the sea ice‐ocean interaction in the SIC assimilation, implying the necessity of assimilating more oceanic and sea‐ice observations. 
    more » « less
  3. null (Ed.)
    Abstract Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen and Bellingshausen, Indian, and West Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently-developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal timescales. 
    more » « less
  4. Abstract Many modern sea ice models used in global climate models represent the subgrid‐scale heterogeneity in sea ice thickness with an ice thickness distribution (ITD), which improves model realism by representing the significant impact of the high spatial heterogeneity of sea ice thickness on thermodynamic and dynamic processes. Most models default to five thickness categories. However, little has been done to explore the effects of the resolution of this distribution (number of categories) on sea‐ice feedbacks in a coupled model framework and resulting representation of the sea ice mean state. Here, we explore this using sensitivity experiments in CESM2 with the standard 5 ice thickness categories and 15 ice thickness categories. Increasing the resolution of the ITD in a run with preindustrial climate forcing results in substantially thicker Arctic sea ice year‐round. Analyses show that this is a result of the ITD influence on ice strength. With 15 ITD categories, weaker ice occurs for the same average thickness, resulting in a higher fraction of ridged sea ice. In contrast, the higher resolution of thin ice categories results in enhanced heat conduction and bottom growth and leads to only somewhat increased winter Antarctic sea ice volume. The spatial resolution of the ICESat‐2 satellite mission provides a new opportunity to compare model outputs with observations of seasonal evolution of the ITD in the Arctic (ICESat‐2; 2018–2021). Comparisons highlight significant differences from the ITD modeled with both runs over this period, likely pointing to underlying issues contributing to the representation of average thickness. 
    more » « less
  5. This study investigates the variability of water mass transformation (WMT) within the Weddell Gyre (WG). The WG serves as a pivotal site for the meridional overturning circulation (MOC) and ocean ventilation because it is the primary origin of the largest volume of water mass in the global ocean, Antarctic Bottom Water (AABW). Recent mooring data suggest substantial seasonal and interannual variability of AABW properties exiting the WG, and studies have linked the variability to the large-scale climate forcings affecting wind stress in the WG region. However, the specific thermodynamic mechanisms that link variability in surface forcings to variability in water mass transformations and AABW export remain unclear. This study explores WMT variability via WMT volume budgets derived from Walin’s classic WMT framework, using three state-of-the-art, data-assimilating ocean reanalyses: Estimating the Circulation and Climate of the Ocean state estimate (ECCOv4), Southern Ocean State Estimate (SOSE) and Simple Ocean Data Assimilation (SODA). From the model outputs, we diagnose a closed form of the water mass budget for AABW that explicitly accounts for transport across the WG boundary, surface forcing, interior mixing, and numerical mixing. We examine the annual mean climatology of the WMT budget terms, the seasonal climatology, and finally the interannual variability. In ECCO and SOSE, we see strong interannual variability in AABW volume budget. In SOSE, we find an accelerating loss of AABW, driven largely by interior mixing and changes in surface salt fluxes. ECCO shows a similar trend during a 3-yr time period beyond what is covered in SOSE, but also reveals such trends to be part of interannual variability over a much longer time period. Overall, ECCO provides the most useful timeseries for understanding the processes and mechanisms that drive WMT and export variability. SODA, in contrast, displays unphysically large variability in AABW volume, which we attribute to its data assimilation scheme. We examine correlations between the WMT budgets and large-scale climate indices, including ENSO and SAM; no strong relationships emerge, suggesting that these reanalysis products may not reproduce the AABW export pathways and mechanisms hypothesized from observations. 
    more » « less