skip to main content

Search for: All records

Award ID contains: 1936222

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Arctic seasonal halocline impacts the exchange of heat, energy, and nutrients between the surface and the deeper ocean, and it is changing in response to Arctic sea ice melt over the past several decades. Here, we assess seasonal halocline formation in 1975 and 2006–12 by comparing daily, May–September, salinity profiles collected in the Canada Basin under sea ice. We evaluate differences between the two time periods using a one-dimensional (1D) bulk model to quantify differences in freshwater input and vertical mixing. The 1D metrics indicate that two separate factors contribute similarly to stronger stratification in 2006–12 relative to 1975: 1) larger surface freshwater input and 2) less vertical mixing of that freshwater. The larger freshwater input is mainly important in August–September, consistent with a longer melt season in recent years. The reduced vertical mixing is mainly important from June until mid-August, when similar levels of freshwater input in 1975 and 2006–12 are mixed over a different depth range, resulting in different stratification. These results imply that decadal changes to ice–ocean dynamics, in addition to freshwater input, significantly contribute to the stronger seasonal stratification in 2006–12 relative to 1975. These findings highlight the need for near-surface process studies tomore »elucidate the impact of lateral processes and ice–ocean momentum exchange on vertical mixing. Moreover, the results may provide insight for improving the representation of decadal changes to Arctic upper-ocean stratification in climate models that do not capture decadal changes to vertical mixing.

    « less
  2. Abstract

    Climate models of varying complexity have been used for decades to investigate the impact of mountains on the atmosphere and surface climate. Here, the impact of removing the continental topography on the present-day ocean climate is investigated using three different climate models spanning multiple generations. An idealized study is performed where all present-day land surface topography is removed and the equilibrium change in the oceanic mean state with and without the mountains is studied. When the mountains are removed, changes found in all three models include a weakening of the Atlantic meridional overturning circulation and associated SST cooling in the subpolar North Atlantic. The SSTs also warm in all the models in the western North Pacific Ocean associated with a northward shift of the atmospheric jet and the Kuroshio. In the ocean interior, the magnitude of the temperature and salinity response to removing the mountains is relatively small and the sign and magnitude of the changes generally vary among the models. These different interior ocean responses are likely related to differences in the mean state of the control integrations due to differences in resolution and associated subgrid-scale mixing parameterizations. Compared to the results from 4xCO2simulations, the interior ocean temperaturemore »changes caused by mountain removal are relatively small; however, the oceanic circulation response and Northern Hemisphere near-surface temperature changes are of a similar magnitude to the response to such radiative forcing changes.

    « less
  3. Free, publicly-accessible full text available July 1, 2023
  4. Free, publicly-accessible full text available July 1, 2023
  5. Free, publicly-accessible full text available June 16, 2023
  6. Abstract. Use of an ocean parameter and state estimation framework – such as the Estimating the Circulation and Climate of the Ocean (ECCO) framework – could provide an opportunity to learn about the spatial distribution of the diapycnal diffusivity parameter (κρ) that observations alone cannot due to gaps in coverage. However, we show that the inclusion of misfits to observed physical variables – such as in situ temperature, salinity, and pressure – currently accounted for in ECCO is not sufficient, as κρ from ECCO does not agree closely with any observationally derived product. These observationally derived κρ products were inferred from microstructure measurements, derived from Argo and conductivity–temperature–depth (CTD) data using a strain-based parameterization of fine-scale hydrographic structure, or calculated from climatological and seafloor data using a parameterization of tidal mixing. The κρ products are in close agreement with one another but have both measurement and structural uncertainties, whereas tracers can have relatively small measurement uncertainties. With the ultimate goal being to jointly improve the ECCO state estimate and representation of κρ in ECCO, we investigate whether adjustments in κρ due to inclusion of misfits to a tracer – dissolved oxygen concentrations from an annual climatology – would be similarmore »to those due to inclusion of misfits to observationally derived κρ products. We do this by performing sensitivity analyses with ECCO. We compare multiple adjoint sensitivity calculations: one configuration uses misfits to observationally derived κρ, and the other uses misfits to observed dissolved oxygen concentrations. We show that adjoint sensitivities of dissolved oxygen concentration misfits to the state estimate's control space typically direct κρ to improve relative to the observationally derived values. These results suggest that the inclusion of oxygen in ECCO's misfits will improve κρ in ECCO, particularly in (sub)tropical regions.« less