This paper presents the implementation of a parameter-free third-order recon- struction method for cell-centered finite volume solvers on unstructured grids. The reconstruction is based on nodal gradients obtained using the least squares approach from solutions at adjacent cell centers. The cell and face gradients are computed by simple arithmetic averaging of vertex gradients, while the face values are obtained through quadratic interpolation. Importantly, the current reconstruction method does not require explicit second derivatives, and its stencil remains as compact as that used in traditional linear reconstruction methods. The third-order accuracy of the left and right states at the face values, along with the second-order accuracy of the face gradients, is numerically verified on various unstructured grids. This verified third-order accuracy is a crucial condition for ensuring the overall accuracy of the finite volume solver.
more »
« less
Development of a Stable High-Order Point-Value Enhanced Finite Volume (PFV) Method Based on Approximate Delta Functions
In this work, we generalize the expression of an approximate delta function (ADF), which is a finite- order polynomial that holds identical integral properties to the Dirac delta function, particularly, when used in conjunction with a finite-order polynomial integrand over a finite domain. By focusing on one- dimensional configurations, we show that the use of generalized ADF polynomials can be effective at recovering and extending several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements reduces the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Presently, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to two benchmark cases, namely, the linear wave and nonlinear Burgers’ equations in one-dimensional space.
more »
« less
- Award ID(s):
- 1761675
- PAR ID:
- 10268275
- Date Published:
- Journal Name:
- 48th AIAA Fluid Dynamics Conference
- Volume:
- 6
- Page Range / eLocation ID:
- 3876–3900
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor stencil. The construction of the flux of the low-order method is based on an idea from Abgrall et al. (2017). The mass flux of the low-order and the high-order methods are identical on each finite element cell. This allows for mass preserving and invariant-domain preserving limiting.more » « less
-
Abstract A preceding 2023 study argued that the resistance of a heterogeneous material to the curvature of the displacement field is the most physically realistic localization limiter for softening damage. The curvature was characterized by the second gradient of the displacement vector field, which includes the material rotation gradient, and was named the “sprain” tensor, while the term “spress” is here proposed as the force variable work-conjugate to “sprain.” The partial derivatives of the associated sprain energy density yielded in the preceeding study, sets of curvature resisting self-equilibrated nodal sprain forces. However, the fact that the sprain forces had to be applied on the adjacent nodes of a finite element greatly complicated the programming and extended the simulation time in a commercial code such as abaqus by almost two orders of magnitude. In the present model, Smooth Lagrangian Crack Band Model (slCBM), these computational obstacles are here overcome by using finite elements with linear shape functions for both the displacement vector and for an approximate displacement gradient tensor. A crucial feature is that the nodal values of the approximate gradient tensor are shared by adjacent finite elements. The actual displacement gradient tensor calculated from the nodal displacement vectors is constrained to the approximate displacement gradient tensor by means of a Lagrange multiplier tensor, either one for each element or one for each node. The gradient tensor of the approximate gradient tensor then represents the approximate third-order displacement curvature tensor, or Hessian of the displacement field. Importantly, the Lagrange multiplier behaves as an externally applied generalized moment density that, similar to gravity, does not affect the total strain-plus-sprain energy density of material. The Helmholtz free energy of the finite element and its associated stiffness matrix are formulated and implemented in a user’s element of abaqus. The conditions of stationary values of the total free energy of the structure with respect to the nodal degrees-of-freedom yield the set of equilibrium equations of the structure for each loading step. One- and two-dimensional examples of crack growth in fracture specimens are given. It is demonstrated that the simulation results of the three-point bend test are independent of the orientation of a regular square mesh, capture the width variation of the crack band, the damage strain profile across the band, and converge as the finite element mesh is refined.more » « less
-
Abstract We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart–Thomas, and Brezzi–Douglas–Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.more » « less
-
We introduce a deep architecture named HoD-Net to enable high-order differentiability for deep learning. HoD-Net is based on and generalizes the complex-step finite difference (CSFD) method. While similar to classic finite difference, CSFD approaches the derivative of a function from a higher-dimension complex domain, leading to highly accurate and robust differentiation computation without numerical stability issues. This method can be coupled with backpropagation and adjoint perturbation methods for an efficient calculation of high-order derivatives. We show how this numerical scheme can be leveraged in challenging deep learning problems, such as high-order network training, deep learning-based physics simulation, and neural differential equations.more » « less
An official website of the United States government

