Abstract The ability of digital sky surveys to collect and store very large amounts of data provides completely new ways to study the local universe. Perhaps one of the most provocative observations reported with such tools is the asymmetry between galaxies with clockwise and counterclockwise spin patterns. Here, I use∼1.7 × 105spiral galaxies from Sloan Digital Sky Survey (SDSS) and sort them by their spin patterns (clockwise or counterclockwise) to identify and profile a possible large‐scale pattern of the distribution of galaxy spin patterns as observed from Earth. The analysis shows asymmetry between the number of clockwise and counterclockwise spiral galaxies imaged by SDSS and a dipole axis. These findings largely agree with previous reports using smaller datasets. The probability of the differences between the number of galaxies occurring by chance isp< 4 × 10−9, and the probability of an asymmetry axis occurring by mere chance isp< 1.4×10−5.
more »
« less
Galaxy spin direction distribution in HST and SDSS show similar large-scale asymmetry
Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $$\sim8.7\cdot10^3$$ spiral galaxies imaged by Hubble Space Telescope ( HST ) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $$\sim2.8\sigma$$ and $$\sim7.38\sigma$$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $$(\alpha=78^{\rm o},\delta=47^{\rm o})$$ and is well within the $$1\sigma$$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $$(\alpha=71^{\rm o},\delta=61^{\rm o})$$ .
more »
« less
- Award ID(s):
- 1903823
- PAR ID:
- 10268493
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of Australia
- Volume:
- 37
- ISSN:
- 1323-3580
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Previous observations of a large number of galaxies show differences between the photometry of spiral galaxies with clockwise spin patterns and spiral galaxies with counterclockwise spin patterns. In this study the mean magnitude of a large number of clockwise galaxies is compared to the mean magnitude of a large number of counterclockwise galaxies. The observed difference between clockwise and counterclockwise spiral galaxies imaged by the space-based COSMOS survey is compared to the differences between clockwise and counterclockwise galaxies imaged by the Earth-based SDSS and Pan-STARRS around the same field. The annotation of clockwise and counterclockwise galaxies is a fully automatic process that does not involve human intervention, and in all experiments both clockwise and counterclockwise galaxies are separated from the same fields. The comparison shows that the same asymmetry was identified by all three telescopes, providing strong evidence that the rotation direction of a spiral galaxy is linked to its luminosity as measured from Earth. Analysis of the luminosity difference using a large number of galaxies from different parts of the sky shows that the difference between clockwise and counterclockwise galaxies changes with the direction of observation, and oriented around an axis.more » « less
-
Gaite, Jose (Ed.)The distribution of the spin directions of spiral galaxies in the Sloan Digital Sky Survey has been a topic of debate in the past two decades, with conflicting conclusions reported even in cases where the same data were used. Here, we follow one of the previous experiments by applying the SpArcFiRe algorithm to annotate the spin directions in an original dataset of Galaxy Zoo 1. The annotation of the galaxy spin directions is carried out after the first step of selecting the spiral galaxies in three different manners: manual analysis by Galaxy Zoo classifications, by a model-driven computer analysis, and with no selection of spiral galaxies. The results show that when spiral galaxies are selected by Galaxy Zoo volunteers, the distribution of their spin directions as determined by SpArcFiRe is not random, which agrees with previous reports. When selecting the spiral galaxies using a model-driven computer analysis or without selecting the spiral galaxies at all, the distribution is also not random. Simple binomial distribution analysis shows that the probability of the parity violation to occur by chance is lower than 0.01. Fitting the spin directions as observed from the Earth to cosine dependence exhibits a dipole axis with statistical strength of 2.33 σ to 3.97 σ . These experiments show that regardless of the selection mechanism and the analysis method, all experiments show similar conclusions. These results are aligned with previous reports using other methods and telescopes, suggesting that the spin directions of spiral galaxies as observed from the Earth exhibit a dipole axis formed by their spin directions. Possible explanations can be related to the large-scale structure of the universe or to the internal structure of galaxies. The catalogs of annotated galaxies generated as part of this study are available.more » « less
-
null (Ed.)Observations of non-random distribution of galaxies with opposite spin directions have recently attracted considerable attention. Here, a method for identifying cosine-dependence in a dataset of galaxies annotated by their spin directions is described in the light of different aspects that can impact the statistical analysis of the data. These aspects include the presence of duplicate objects in a dataset, errors in the galaxy annotation process, and non-random distribution of the asymmetry that does not necessarily form a dipole or quadrupole axes. The results show that duplicate objects in the dataset can artificially increase the likelihood of cosine dependence detected in the data, but a very high number of duplicate objects is required to lead to a false detection of an axis. Inaccuracy in galaxy annotations has relatively minor impact on the identification of cosine dependence when the error is randomly distributed between clockwise and counterclockwise galaxies. However, when the error is not random, even a small bias of 1% leads to a statistically significant cosine dependence that peaks at the celestial pole. Experiments with artificial datasets in which the distribution was not random showed strong cosine dependence even when the data did not form a full dipole axis alignment. The analysis when using the unmodified data shows asymmetry profile similar to the profile shown in multiple previous studies using several different telescopes.more » « less
-
ABSTRACT We present the first statistical analysis of kinematically resolved, spatially extended $$\rm Ly\alpha$$ emission around z = 2–3 galaxies in the Keck Baryonic Structure Survey (KBSS) using the Keck Cosmic Web Imager (KCWI). Our sample of 59 star-forming galaxies (zmed = 2.29) comprises the subset with typical KCWI integration times of ∼5 h and with existing imaging data from the Hubble Space Telescope and/or adaptive optics-assisted integral field spectroscopy. The high-resolution images were used to evaluate the azimuthal dependence of the diffuse $$\rm Ly\alpha$$ emission with respect to the stellar continuum within projected galactocentric distances of ≲30 proper kpc. We introduce cylindrically projected 2D spectra (CP2D) that map the averaged $$\rm Ly\alpha$$ spectral profile over a specified range of azimuthal angle, as a function of impact parameter around galaxies. The averaged CP2D spectrum of all galaxies shows clear signatures of $$\rm Ly\alpha$$ resonant scattering by outflowing gas. We stacked the CP2D spectra of individual galaxies over ranges of azimuthal angle with respect to their major axes. The extended $$\rm Ly\alpha$$ emission along the galaxy principal axes is statistically indistinguishable, with residual asymmetry of ≤2 per cent (∼2σ) of the integrated $$\rm Ly\alpha$$ emission. The symmetry implies that the $$\rm Ly\alpha$$ scattering medium is dominated by outflows in all directions within 30 kpc. Meanwhile, we find that the blueshifted component of $$\rm Ly\alpha$$ emission is marginally stronger along galaxy minor axes for galaxies with relatively weak $$\rm Ly\alpha$$ emission. We speculate that this weak directional dependence of $$\rm Ly\alpha$$ emission becomes discernible only when the $$\rm Ly\alpha$$ escape fraction is low. These discoveries highlight the need for similar analyses in simulations with $$\rm Ly\alpha$$ radiative transfer modelling.more » « less
An official website of the United States government

