skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growth and defense characteristics of whitebark pine (Pinus albicaulis) and lodgepole pine (Pinus contorta var latifolia) in a high-elevation, disturbance-prone mixed-conifer forest in northwestern Montana, USA
Award ID(s):
2029775 1539820
PAR ID:
10269332
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Forest Ecology and Management
Volume:
493
Issue:
C
ISSN:
0378-1127
Page Range / eLocation ID:
119286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract Trees are suffering mortality across the globe as a result of drought, warming, and biotic attacks. The combined effects of warming and drought onin situtree chemical defenses against herbivory have not been studied to date. To address this, we transplanted mature piñon pine trees—a well-studied species that has undergone extensive drought and herbivore-related mortality—within their native woodland habitat and also to a hotter-drier habitat and measured monoterpene emissions and concentrations across the growing season. We hypothesized that greater needle temperatures in the hotter-drier site would increase monoterpene emission rates and consequently lower needle monoterpene concentrations, and that this temperature effect would dominate the seasonal pattern of monoterpene concentrations regardless of drought. In support of our hypothesis, needle monoterpene concentrations were lower across all seasons in trees transplanted to the hotter-drier site. Contrary to our hypothesis, basal emission rates (emission rates normalized to 30 °C and a radiative flux of 1000μmol m−2s−1) did not differ between sites. This is because an increase in emissions at the hotter-drier site from a 1.5 °C average temperature increase was offset by decreased emissions from greater plant water stress. High emission rates were frequently observed during June, which were not related to plant physiological or environmental factors but did not occur below pre-dawn leaf water potentials of −2 MPa, the approximate zero carbon assimilation point in piñon pine. Emission rates were also not under environmental or plant physiological control when pre-dawn leaf water potential was less than −2 MPa. Our results suggest that drought may override the effects of temperature on monoterpene emissions and tissue concentrations, and that the influence of drought may occur through metabolic processes sensitive to the overall needle carbon balance. 
    more » « less