A<sc>bstract</sc> A search is reported for heavy resonances and quantum black holes decaying into eμ, eτ, and μτ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016–2018 at$$ \sqrt{s} $$ = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The eμ, eτ, and μτ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant τ sneutrino production inRparity violating supersymmetric models, heavy Z′ gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant τ sneutrinos are excluded for masses up to 4.2TeV in the eμ channel, 3.7TeV in the eτ channel, and 3.6TeV in the μτ channel. A Z′ boson with lepton flavor violating couplings is excluded up to a mass of 5.0TeV in the eμ channel, up to 4.3Te V in the eτ channel, and up to 4.1TeV in the μτ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6TeV in the eμ channel, 5.2TeV in the eτ channel, and 5.0TeV in the μτ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.
more »
« less
Neutrino masses and mixing in models with large extra dimensions and localized fermions
Using a low-energy effective field theory approach, we study some properties of models with large extra dimensions, in which quarks and leptons have localized wave functions in the extra dimensions. We consider models with two types of gauge groups: (i) the Standard-Model gauge group, and (ii) the left-right symmetric gauge group. Our main focus is on the lepton sector of models with n=2 extra dimensions, in particular, neutrino masses and mixing. We analyze the requisite conditions that the models must satisfy to be in accord with data and present a solution for lepton wave functions in the extra dimensions that fulfils these conditions. As part of our work, we also present a new solution for quark wave function centers. Issues with flavor-changing neutral-current effects are assessed. Finally, we remark on baryogenesis and dark matter in these models.
more »
« less
- Award ID(s):
- 1914731
- PAR ID:
- 10269415
- Date Published:
- Journal Name:
- Physical review
- Volume:
- D 103, 015021 –
- Issue:
- 103
- ISSN:
- 2469-9985
- Page Range / eLocation ID:
- 015021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We demonstrate that the discrepancy between the anomalous magnetic moment measured at BNL and Fermilab and the Standard Model prediction could be explained within the context of low-scale gravity and large extra-dimensions. The dominant contribution to (g − 2)µ originates in Kaluza-Klein (KK) excitations (of the lepton gauge boson) which do not mix with quarks (to lowest order) and therefore can be quite light avoiding LHC constraints. We show that the KK contribution to (g − 2)µ,is universal with the string scale entering as an effective cutoff. The KK tower provides a unequivocal distinctive signal which will be within reach of the future muon smasher.more » « less
-
Building on work by Hang and He, we show how the residual five-dimensional diffeomorphism symmetries of compactified gravitational theories with a warped extra dimension imply equivalence theorems which ensure that the scattering amplitudes of helicity-0 and helicity-1 spin-2 Kaluza-Klein states equal (to leading order in scattering energy) those of the corresponding Goldstone bosons present in the ’t-Hooft-Feynman gauge. We derive a set of Ward identities that leads to a transparent power-counting of the scattering amplitudes involving spin-2 Kaluza-Klein states.We explicitly calculate these amplitudes in terms of the Goldstone bosons in the Randall-Sundrum model, check the correspondence to previous unitary-gauge computations, and demonstrate the efficacy of ’t-Hooft-Feynman gauge for accurately computing amplitudes for scattering of the spin-2 states both among themselves and with matter. Power-counting or the Goldstone boson interactions establishes that the scattering amplitudes grow no faster than O(s), explaining the origin of the behavior previously shown to arise from intricate cancellations between different contributions to these scattering amplitudes in unitary gauge. We describe how our results apply to more general warped geometries, including models with a stabilized extra dimension. We explicitly identify the symmetry algebra of the residual 5D diffeomorphisms of a Randall-Sundrum extra-dimensional theory.more » « less
-
A bstract We consider the Seiberg-Witten solution of pure $$ \mathcal{N} $$ N = 2 gauge theory in four dimensions, with gauge group SU( N ). A simple exact series expansion for the dependence of the 2( N − 1) Seiberg-Witten periods a I ( u ) , a DI ( u ) on the N − 1 Coulomb-branch moduli u n is obtained around the ℤ 2 N -symmetric point of the Coulomb branch, where all u n vanish. This generalizes earlier results for N = 2 in terms of hypergeometric functions, and for N = 3 in terms of Appell functions. Using these and other analytical results, combined with numerical computations, we explore the global structure of the Kähler potential K = $$ \frac{1}{2}{\sum}_I $$ 1 2 ∑ I Im( $$ \overline{a} $$ a ¯ I a DI ), which is single valued on the Coulomb branch. Evidence is presented that K is a convex function, with a unique minimum at the ℤ 2 N -symmetric point. Finally, we explore candidate walls of marginal stability in the vicinity of this point, and their relation to the surface of vanishing Kähler potential.more » « less
-
null (Ed.)A bstract In celestial conformal field theory, gluons are represented by primary fields with dimensions ∆ = 1 + iλ , λ ∈ ℝ and spin J = ±1, in the adjoint representation of the gauge group. All two- and three-point correlation functions of these fields are zero as a consequence of four-dimensional kinematic constraints. Four-point correlation functions contain delta-function singularities enforcing planarity of four-particle scattering events. We relax these constraints by taking a shadow transform of one field and perform conformal block decomposition of the corresponding correlators. We compute the conformal block coefficients. When decomposed in channels that are “compatible” in two and four dimensions, such four-point correlators contain conformal blocks of primary fields with dimensions ∆ = 2 + M + iλ , where M ≥ 0 is an integer, with integer spin J = −M, −M + 2 , … , M − 2 , M . They appear in all gauge group representations obtained from a tensor product of two adjoint representations. When decomposed in incompatible channels, they also contain primary fields with continuous complex spin, but with positive integer dimensions.more » « less
An official website of the United States government

