skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conformal blocks from celestial gluon amplitudes
A bstract In celestial conformal field theory, gluons are represented by primary fields with dimensions ∆ = 1 + iλ , λ ∈ ℝ and spin J = ±1, in the adjoint representation of the gauge group. All two- and three-point correlation functions of these fields are zero as a consequence of four-dimensional kinematic constraints. Four-point correlation functions contain delta-function singularities enforcing planarity of four-particle scattering events. We relax these constraints by taking a shadow transform of one field and perform conformal block decomposition of the corresponding correlators. We compute the conformal block coefficients. When decomposed in channels that are “compatible” in two and four dimensions, such four-point correlators contain conformal blocks of primary fields with dimensions ∆ = 2 + M + iλ , where M ≥ 0 is an integer, with integer spin J = −M, −M + 2 , … , M − 2 , M . They appear in all gauge group representations obtained from a tensor product of two adjoint representations. When decomposed in incompatible channels, they also contain primary fields with continuous complex spin, but with positive integer dimensions.  more » « less
Award ID(s):
1913328
PAR ID:
10281986
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract In a recent paper, here referred to as part I, we considered the celestial four-gluon amplitude with one gluon represented by the shadow transform of the corresponding primary field operator. This correlator is ill-defined because it contains branch points related to the presence of conformal blocks with complex spin. In this work, we adopt a procedure similar to minimal models and construct a single-valued completion of the shadow correlator, in the limit when the shadow is “soft.” By following the approach of Dotsenko and Fateev, we obtain an integral representation of such a single-valued correlator. This allows inverting the shadow transform and constructing a single-valued celestial four-gluon amplitude. This amplitude is drastically different from the original Mellin amplitude. It is defined over the entire complex plane and has correct crossing symmetry, OPE and bootstrap properties. It agrees with all known OPEs of celestial gluon operators. The conformal block spectrum consists of primary fields with dimensions ∆ = m + iλ , with integer m ≥ 1 and various, but always integer spin, in all group representations contained in the product of two adjoint representations. 
    more » « less
  2. A bstract In celestial holography, four-dimensional scattering amplitudes are considered as two-dimensional conformal correlators of a putative two-dimensional celestial conformal field theory (CCFT). The simplest way of converting momentum space amplitudes into CCFT correlators is by taking their Mellin transforms with respect to light-cone energies. For massless particles, like gluons, however, such a construction leads to three-point and four-point correlators that vanish everywhere except for a measure zero hypersurface of celestial coordinates. This is due to the four-dimensional momentum conservation law that constrains the insertion points of the operators associated with massless particles. These correlators are reminiscent of Coulomb gas correlators that, in the absence of background charges, vanish due to charge conservation. We supply the background momentum by coupling Yang-Mills theory to a background dilaton field, with the (complex) dilaton source localized on the celestial sphere. This picture emerges from the physical interpretation of the solutions of the system of differential equations discovered by Banerjee and Ghosh. We show that the solutions can be written as Mellin transforms of the amplitudes evaluated in such a dilaton background. The resultant three-gluon and four-gluon amplitudes are single-valued functions of celestial coordinates enjoying crossing symmetry and all other properties expected from standard CFT correlators. We use them to extract OPEs and compare them with the OPEs extracted from multi-gluon celestial amplitudes without a dilaton background. We perform the conformal block decomposition of the four-gluon single-valued correlator and determine the dimensions, spin and group representations of the entire primary field spectrum of the Yang-Mills sector of CCFT. 
    more » « less
  3. We present a correspondence between two-dimensional \mathcal{N} = (2,2) 𝒩 = ( 2 , 2 ) supersymmetric gauge theories and rational integrable \mathfrak{gl}(m|n) 𝔤 𝔩 ( m | n ) spin chains with spin variables taking values in Verma modules. Toexplain this correspondence, we realize the gauge theories asconfigurations of branes in string theory and map them by dualities tobrane configurations that realize line defects in four-dimensionalChern–Simons theory with gauge group GL(m|n) G L ( m | n ) .The latter configurations embed the superspin chains into superstringtheory. We also provide a string theory derivation of a similarcorrespondence, proposed by Nekrasov, for rational \mathfrak{gl}(m|n) 𝔤 𝔩 ( m | n ) spin chains with spins valued in finite-dimensional representations. 
    more » « less
  4. A<sc>bstract</sc> The planar integrability of$$ \mathcal{N} $$ N = 4 super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the SU(2)$$ \mathcal{N} $$ N = 4 SYM provides another interesting solvable corner which exhibits striking similarities despite being far from the planar limit. We study non-BPS operators obtained by small deformations of half-BPS operators withR-chargeJin the limitJ→ ∞ with$$ {\lambda}_J\equiv {g}_{\textrm{YM}}^2J/2 $$ λ J g YM 2 J / 2 fixed. The dynamics in thislarge charge ’t Hooft limitis constrained by a centrally-extended$$ \mathfrak{psu} $$ psu (2|2)2symmetry that played a crucial role for the planar integrability. To the leading order in 1/J, the spectrum is fully fixed by this symmetry, manifesting the magnon dispersion relation familiar from the planar limit, while it is constrained up to a few constants at the next order. We also determine the structure constant of two large charge operators and the Konishi operator, revealing a rich structure interpolating between the perturbative series at weak coupling and the worldline instantons at strong coupling. In addition we compute heavy-heavy-light-light (HHLL) four-point functions of half-BPS operators in terms of resummed conformal integrals and recast them into an integral form reminiscent of the hexagon formalism in the planar limit. For general SU(N) gauge groups, we study integrated HHLL correlators by supersymmetric localization and identify a dual matrix model of sizeJ/2 that reproduces our large charge result atN= 2. Finally we discuss a relation to the physics on the Coulomb branch and explain how the dilaton Ward identity emerges from a limit of the conformal block expansion. We comment on generalizations including the large spin ’t Hooft limit, the combined largeN-largeJlimits, and applications to general$$ \mathcal{N} $$ N = 2 superconformal field theories. 
    more » « less
  5. The spectra of two-dimensional su(2) gauge theories coupled to a single massless Majorana fermion in integer representations, J, are numerically investigated using the discrete light-cone Hamiltonian. One of our aims is to explore the possible presence of massless states for J > 2 in spite of the absence of a continuous symmetry. After comparing to existing results for J = 1 (adjoint fermions), we present results for J = 2, 3, 4. As expected, for J = 2 there are no massless states but in contrast to the J = 1 theory, the lightest state is a boson. We find exact massless modes in the bosonic and fermionic sector for all values of total momentum for J = 3 and J = 4 and, in each sector, the number of massless modes grows with the value of the total momentum. In addition to the spectrum, we present results on the particle number and momentum fraction distributions and argue for a separation of bulk states from edge states. 
    more » « less