Abstract Deep penetration of energetic electrons (10s–100s of keV) to lowL‐shells (L < 4), as an important source of inner belt electrons, is commonly observed during geomagnetically active times. However, such deep penetration is not observed as frequently for similar energy protons, for which underlying mechanisms are not fully understood. To study their differential deep penetration, we conducted a statistical analysis using phase space densities (PSDs) ofµ = 10–50 MeV/G,K = 0.14 G1/2Re electrons and protons from multiyear Van Allen Probes observations. The results suggest systematic differences in electron and proton deep penetration: electron PSD enhancements at lowL‐shells occur more frequently, deeply, and faster than protons. Forµ = 10–50 MeV/G electrons, the occurrence rate of deep penetration events (defined as daily‐averaged PSD enhanced by at least a factor of 2 within a day atL < 4) is ∼2–3 events/month. For protons, only ∼1 event/month was observed forµ = 10 MeV/G, and much fewer events were identified forµ > 20 MeV/G. Leveraging dual‐Probe configurations, fast electron deep penetrations atL < 4 are revealed: ∼70% of electron deep penetration events occurred within ∼9 hr; ∼8%–13% occurred even within 3 hr, with lower‐µelectrons penetrating faster than higher‐µelectrons. These results suggest nondiffusive radial transport as the main mechanism of electron deep penetrations. In comparison, proton deep penetration happens at a slower pace. Statistics also show that the electron PSD radial gradient is much steeper than protons prior to deep penetration events, which can be responsible for these differential behaviors of electron and proton deep penetrations.
more »
« less
Muon Discrepancy Within D‐brane String Compactifications
We demonstrate that the discrepancy between the anomalous magnetic moment measured at BNL and Fermilab and the Standard Model prediction could be explained within the context of low-scale gravity and large extra-dimensions. The dominant contribution to (g − 2)µ originates in Kaluza-Klein (KK) excitations (of the lepton gauge boson) which do not mix with quarks (to lowest order) and therefore can be quite light avoiding LHC constraints. We show that the KK contribution to (g − 2)µ,is universal with the string scale entering as an effective cutoff. The KK tower provides a unequivocal distinctive signal which will be within reach of the future muon smasher.
more »
« less
- PAR ID:
- 10281993
- Date Published:
- Journal Name:
- Fortschritte der Physik
- ISSN:
- 0015-8208
- Page Range / eLocation ID:
- 2100084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We revisit the phenomenology of dark matter (DM) scenarios within radius-stabilized Randall-Sundrum models. Specifically, we consider models where the dark matter candidates are Standard Model (SM) singlets confined to the TeV-brane and interact with the SM via spin-2 and spin-0 gravitational Kaluza-Klein (KK) modes. We compute the thermal relic density of DM particles in these models by applying recent work showing that scattering amplitudes of massive spin-2 KK states involve an intricate cancellation between various diagrams. Considering the resulting DM abundance, collider searches, and the absence of a signal in direct DM detection experiments, we show that spin-2 KK portal DM models are highly constrained. In particular, we confirm that within the usual thermal freeze-out scenario, scalar dark matter models are essentially ruled out. In contrast, we show that fermion and vector dark matter models are viable in a region of parameter space in which dark matter annihilation through a KK graviton is resonant. Specifically, vector models are viable for dark matter masses ranging from 1.1 to 5.5 TeV for theories in which the scale of couplings of the KK modes is of order 40 TeV or lower. Fermion dark matter models are viable for a similar mass region, but only for KK coupling scales of order 20 TeV. In this work, we provide a complete description of the calculations needed to arrive at these results and, provide a discussion of new KK-graviton couplings needed for the computations, which have not previously been discussed in the literature. Here, we focus on models in which the radion is light, and the backreaction of the radion stabilization dynamics on the gravitational background can be neglected. The phenomenology of a model with a heavy radion and the consideration of the effects of the radion stabilization dynamics on the DM abundance will be addressed in forthcoming work. Published by the American Physical Society2025more » « less
-
Abstract Magnetic fields play a crucial role in various astrophysical processes within the intracluster medium, including heat conduction, cosmic-ray acceleration, and the generation of synchrotron radiation. However, measuring magnetic field strength is typically challenging due to the limited availability of Faraday rotation measure sources. To address the challenge, we propose a novel method that employs Convolutional Neural Networks (CNNs) alongside synchrotron emission observations to estimate magnetic field strengths in galaxy clusters. Our CNN model is trained on either magnetohydrodynamic (MHD) turbulence simulations or MHD galaxy cluster simulations, which incorporate complex dynamics such as cluster mergers and sloshing motions. The results demonstrate that CNNs can effectively estimate magnetic field strengths with mean-squared error of approximately 0.135µG2, 0.044µG2, and 0.02µG2forβ = 100, 200, and 500 conditions, respectively. Additionally, we have confirmed that our CNN model remains robust against noise and variations in viewing angles with sufficient training, ensuring reliable performance under a wide range of observational conditions. We compare the CNN approach with the traditional magnetic field strength estimate method that assumes equipartition between cosmic-ray electron energy and magnetic field energy. In contrast to the equipartition method, this CNN approach relies on the morphological feature of synchrotron images, offering a new perspective for complementing traditional estimates and enhancing our understanding of cosmic-ray acceleration mechanisms.more » « less
-
Abstract Stacking two semiconducting transition metal dichalcogenide (MX2) monolayers to form a heterobilayer creates a new variety of semiconductor junction with unique optoelectronic features, such as hosting long-lived dipolar interlayer excitons. Despite many optical, transport, and theoretical studies, there have been few direct electronic structure measurements of these junctions. Here, we apply angle-resolved photoemission spectroscopy with micron-scale spatial resolution (µARPES) to determine the band alignments in MoSe2/WSe2heterobilayers, usingin-situelectrostatic gating to electron-dope and thus probe the conduction band edges. By comparing spectra from heterobilayers with opposite stacking orders, that is, with either MoSe2or WSe2on top, we confirm that the band alignment is type II, with the valence band maximum in the WSe2and the conduction band minimum in the MoSe2. The overall band gap isEG= 1.43 ± 0.03 eV, and to within experimental uncertainty it is unaffected by electron doping. However, the offset between the WSe2and MoSe2valence bands clearly decreases with increasing electron doping, implying band renormalisation only in the MoSe2, the layer in which the electrons accumulate. In contrast,µARPES spectra from a WS2/MoSe2heterobilayer indicate type I band alignment, with both band edges in the MoSe2. These insights into the doping-dependent band alignments and gaps of MX2heterobilayers will be useful for properly understanding and ultimately utilizing their optoelectronic properties.more » « less
-
The halogen-free synthesis of oligosilazanes has been observed upon dehydrocoupling silanes with ammonia at 25 °C using [(2,6-iPr2PhBDI)Mn(µ-H)]2. Extending this methodology to polymethyl-hydrosiloxanes afforded thermally robust polysiloxazane solids, and the dehydrocoupling of 1,3,5,7-tetramethylcyclotetrasiloxane with ammonia afforded a polysiloxazane having a weight-average molecular weight of 4300 g/mol. A representative oligosilazane has been applied to a copper surface and found to afford a 20 μm thick coating that resists corrosion after 24 h under water. Addition of ammonia to [(2,6-iPr2PhBDI)Mn(µ-H)]2 allowed for characterization of the catalyst resting state, [(2,6-iPr2PhBDI)Mn(µ-NH2)]2, which has been found to mediate Si‒N dehydrocoupling.more » « less
An official website of the United States government

