skip to main content


Title: Successive common envelope events from multiple planets
ABSTRACT Many stars harbour multiplanet systems. As these stars expand late in their evolutions, the innermost planet may be engulfed, leading to a common envelope (CE) event. Even if this is insufficient to eject the envelope, it may expand the star further, causing additional CE events, with the last one unbinding what remains of the envelope. This multiplanet CE scenario may have broad implications for stellar and planetary evolution across a range of systems. We develop a simplified version and show that it may be able to explain the recently observed planet WD 1856 b.  more » « less
Award ID(s):
1813298 2020249
NSF-PAR ID:
10269424
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Volume:
502
Issue:
1
ISSN:
1745-3925
Page Range / eLocation ID:
L110 to L114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Radial velocity (RV) measurements of transiting multiplanet systems allow us to understand the densities and compositions of planets unlike those in the solar system. Kepler-102, which consists of five tightly packed transiting planets, is a particularly interesting system since it includes a super-Earth (Kepler-102d) and a sub-Neptune-sized planet (Kepler-102e) for which masses can be measured using RVs. Previous work found a high density for Kepler-102d, suggesting a composition similar to that of Mercury, while Kepler-102e was found to have a density typical of sub-Neptune size planets; however, Kepler-102 is an active star, which can interfere with RV mass measurements. To better measure the mass of these two planets, we obtained 111 new RVs using Keck/HIRES and Telescopio Nazionale Galileo/HARPS-N and modeled Kepler-102's activity using quasiperiodic Gaussian process regression. For Kepler-102d, we report a mass upper limitMd< 5.3M(95% confidence), a best-fit massMd= 2.5 ± 1.4M, and a densityρd= 5.6 ± 3.2 g cm−3, which is consistent with a rocky composition similar in density to the Earth. For Kepler-102e we report a massMe= 4.7 ± 1.7Mand a densityρe= 1.8 ± 0.7 g cm−3. These measurements suggest that Kepler-102e has a rocky core with a thick gaseous envelope comprising 2%–4% of the planet mass and 16%–50% of its radius. Our study is yet another demonstration that accounting for stellar activity in stars with clear rotation signals can yield more accurate planet masses, enabling a more realistic interpretation of planet interiors.

     
    more » « less
  2. ABSTRACT

    Exoplanetary observations reveal that the occurrence rate of hot Jupiters is correlated with star clustering. In star clusters, interactions between planetary systems and close flyby stars can significantly change the architecture of primordially coplanar, circular planetary systems. Flybys can impact hot Jupiter formation via activation of high-eccentricity excitation mechanisms such as the Zeipel–Lidov–Kozai (ZLK) effect and planet–planet scattering. Previous studies have shown that, for a two-planet system, close flybys, especially at high incidence angles, can efficiently activate the ZLK mechanism, thus triggering high-eccentricity tidal migration and ultimately form hot Jupiters. Here, we extend our previous study with a multiplanet (triple) system. We perform high-precision, high-accuracy few-body simulations of stellar flybys and subsequent planetary migration within the perturbed planetary systems using the code spacehub. Our simulations demonstrate that a single close flyby on a multiplanet system can activate secular chaos and ultimately lead to hot Jupiter formation via high-eccentricity migration. We find that the hot Jupiter formation rate per system increases with both the size of the planetary system and the mass of the outer planet, and we quantify the relative formation fractions for a range of parameters. Hot Jupiters formed via secular chaos are expected to be accompanied by massive companions with very long periods. Our study further shows that flyby-induced secular chaos is preferred in low-density clusters where multiplanet systems are more likely to survive, and that it contributes a significant fraction of hot Jupiter formation in star clusters compared to the flyby-induced ZLK mechanism.

     
    more » « less
  3. Abstract

    One of the most mysterious astrophysical states is the common envelope (CE) phase of binary evolution, in which two stars are enshrouded by the envelope shed by one of them. Interactions between the stars and the envelope shrinks the orbit. The CE can lead to mergers or to a subsequent phase of interactions. Mergers may involve any combination of two compact objects and/or stars. Some involving white dwarfs may produce Type Ia supernovae, while merging neutron stars may yield gamma-ray bursts, and merging compact objects of all kinds produce gravitational radiation. Since CEs can arise from a variety of different initial conditions, and due to the complexity of the processes involved, it is difficult to predict their end states. When many systems are being considered, as in population synthesis calculations, conservation principles are generally employed. Here we use angular momentum in a new way to derive a simple expression for the final orbital separation. This method provides advantages for the study of binaries and is particularly well suited to higher-order multiples, now considered to be important in the genesis of potential mergers. Here we focus on CEs in binaries, and the follow-up paper extends our formalism to multiple-star systems within which a CE occurs.

     
    more » « less
  4. Abstract

    About ten percent of Sun-like (1–2M) stars will engulf a 1–10MJplanet as they expand during the red giant branch (RGB) or asymptotic giant branch (AGB) phase of their evolution. Once engulfed, these planets experience a strong drag force in the star’s convective envelope and spiral inward, depositing energy and angular momentum. For these mass ratios, the inspiral takes ∼10–102yr (∼102–103orbits); the planet undergoes tidal disruption at a radius of ∼1R. We use the Modules for Experiments in Stellar Astrophysics (MESA) software instrument to track the stellar response to the energy deposition while simultaneously evolving the planetary orbit. For RGB stars, as well as AGB stars withMp≲ 5MJplanets, the star responds quasi-statically but still brightens measurably on a timescale of years. In addition, asteroseismic indicators, such as the frequency spacing or rotational splitting, differ before and after engulfment. For AGB stars, engulfment of anMp≳ 5MJplanet drives supersonic expansion of the envelope, causing a bright, red, dusty eruption similar to a “luminous red nova.” Based on the peak luminosity, color, duration, and expected rate of these events, we suggest that engulfment events on the AGB could be a significant fraction of low-luminosity red novae in the Galaxy. We do not find conditions where the envelope is ejected prior to the planet’s tidal disruption, complicating the interpretation of short-period giant planets orbiting white dwarfs as survivors of common envelope evolution.

     
    more » « less
  5. ABSTRACT Studies of T Tauri discs inform planet formation theory; observations of variability due to occultation by circumstellar dust are a useful probe of unresolved, planet-forming inner discs, especially around faint M dwarf stars. We report observations of 2M0632, an M dwarf member of the Carina young moving group that was observed by Transiting Exoplanet Survey Satellite over two 1-yr intervals. The combined light curve contains >300 dimming events, each lasting a few hours, and as deep as 40 per cent (0.55 magnitudes). These stochastic events are correlated with a distinct, stable 1.86-d periodic signal that could be stellar rotation. Concurrent ground-based, multiband photometry show reddening consistent with interstellar medium-like dust. The star’s excess emission in the infrared and emission lines in optical and infrared spectra reveal a T Tauri-like accretion disc around the star. We confirm membership of 2M0632 in the Carina group by a Bayesian analysis of its Galactic space motion and position. We combine stellar evolution models with Gaia photometry and constraints on Teff, luminosity, and the absence of detectable lithium in the photosphere to constrain the age of the group and 2M0632 to 40–60 Myr, consistent with earlier estimates. 2M0632 joins a handful of long-lived discs which challenge the canon that disc lifetimes are ≲10 Myr. All known examples surround M dwarfs, suggesting that lower X-ray/ultraviolet irradiation and slower photoevaporation by these stars can dramatically affect disc evolution. The multiplanet systems spawned by long-lived discs probably experienced significant orbital damping and migration into close-in, resonant orbits, and perhaps represented by the TRAPPIST-1 system. 
    more » « less