skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planetesimals around stars with TESS (PAST) – II. An M dwarf ‘dipper’ star with a long-lived disc in the TESS continuous viewing zone
ABSTRACT Studies of T Tauri discs inform planet formation theory; observations of variability due to occultation by circumstellar dust are a useful probe of unresolved, planet-forming inner discs, especially around faint M dwarf stars. We report observations of 2M0632, an M dwarf member of the Carina young moving group that was observed by Transiting Exoplanet Survey Satellite over two 1-yr intervals. The combined light curve contains >300 dimming events, each lasting a few hours, and as deep as 40 per cent (0.55 magnitudes). These stochastic events are correlated with a distinct, stable 1.86-d periodic signal that could be stellar rotation. Concurrent ground-based, multiband photometry show reddening consistent with interstellar medium-like dust. The star’s excess emission in the infrared and emission lines in optical and infrared spectra reveal a T Tauri-like accretion disc around the star. We confirm membership of 2M0632 in the Carina group by a Bayesian analysis of its Galactic space motion and position. We combine stellar evolution models with Gaia photometry and constraints on Teff, luminosity, and the absence of detectable lithium in the photosphere to constrain the age of the group and 2M0632 to 40–60 Myr, consistent with earlier estimates. 2M0632 joins a handful of long-lived discs which challenge the canon that disc lifetimes are ≲10 Myr. All known examples surround M dwarfs, suggesting that lower X-ray/ultraviolet irradiation and slower photoevaporation by these stars can dramatically affect disc evolution. The multiplanet systems spawned by long-lived discs probably experienced significant orbital damping and migration into close-in, resonant orbits, and perhaps represented by the TRAPPIST-1 system.  more » « less
Award ID(s):
2106927
PAR ID:
10337668
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
1386 to 1402
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Some young stellar objects such as T Tauri-like ‘dipper’ stars vary due to transient partial occultation by circumstellar dust, and observations of this phenomenon inform us of conditions in the planet-forming zones close to these stars. Although many dipper stars have been identified with space missions such as Kepler/K2, ground-based telescopes offer longer term and multiwavelength perspectives. We identified 11 dipper stars in the Lupus star-forming region in data from the All-Sky Automated Survey for SuperNovae (ASAS-SN), and further characterized these using observations by the Las Cumbres Global Observatory Telescope (LCOGT) and the Transiting Exoplanet Survey Satellite (TESS), as well as archival data from other missions. Dipper stars were identified from a catalogue of nearby young stars and selected based on the statistical significance, asymmetry, and quasi-periodicity or aperiodicity of variability in their ASAS-SN light curves. All 11 stars lie above or redwards of the zero-age main sequence and have infrared (IR) excesses indicating the presence of full circumstellar discs. We obtain reddening–extinction relations for the variability of seven stars using our combined ASAS-SN-TESS and LCOGT photometry. In all cases, the slopes are below the ISM value, suggesting larger grains, and we find a tentative relation between the slope (grain size) and the $$K_\text{s}-[22 \, \mu \text{m}]$$ IR colour regarded as a proxy for disc evolutionary state. 
    more » « less
  2. null (Ed.)
    ABSTRACT WD 0145+234 is a white dwarf that is accreting metals from a circumstellar disc of planetary material. It has exhibited a substantial and sustained increase in 3–5 $$\mu$$m flux since 2018. Follow-up Spitzer photometry reveals that emission from the disc had begun to decrease by late 2019. Stochastic brightening events superimposed on the decline in brightness suggest the liberation of dust during collisional evolution of the circumstellar solids. A simple model is used to show that the observations are indeed consistent with ongoing collisions. Rare emission lines from circumstellar gas have been detected at this system, supporting the emerging picture of white dwarf debris discs as sites of collisional gas and dust production. 
    more » « less
  3. ABSTRACT We study the growth of stellar discs of Milky Way-sized galaxies using a suite of cosmological simulations. We calculate the half-mass axis lengths and axis ratios of stellar populations split by age in galaxies with stellar mass $$M_{*}=10^7\!-\!10^{10}\, \mathrm{M}_{\odot }$$ at redshifts z > 1.5. We find that in our simulations stars always form in relatively thin discs, and at ages below 100 Myr are contained within half-mass height z1/2 ∼ 0.1 kpc and short-to-long axial ratio z1/2/x1/2 ∼ 0.15. Disc thickness increases with the age of stellar population, reaching median z1/2 ∼ 0.8 kpc and z1/2/x1/2 ∼ 0.6 for stars older than 500 Myr. We trace the same group of stars over the simulation snapshots and show explicitly that their intrinsic shape grows more spheroidal over time. We identify a new mechanism that contributes to the observed disc thickness: rapid changes in the orientation of the galactic plane mix the configuration of young stars. The frequently mentioned ‘upside-down’ formation scenario of galactic discs, which posits that young stars form in already thick discs at high redshift, may be missing this additional mechanism of quick disc inflation. The actual formation of stars within a fairly thin plane is consistent with the correspondingly flat configuration of dense molecular gas that fuels star formation. 
    more » « less
  4. Abstract The outer regions of the protoplanetary disc surrounding the T Tauri star HD 143006 show rings, dust asymmetries and shadows. Whilst rings and dust asymmetries can arise from companions and other mechanisms, shadows and misaligned discs in particular are typically attributed to the presence of misaligned planets or stellar-mass companions. To understand the mechanisms that drive these traits, the innermost regions of discs need to be studied. Using CHARA/MIRCX and VLTI/PIONIER, we observed the sub-au region of HD 143006 . We constrain the orientation of the inner disc of HD 143006 and probe whether a misalignment between the inner and outer disc could be the cause of the shadows. Modelling the visibilities using a geometric model, the inclination and position angle are found to be i = 22○ ± 3○ and PA = 158○ ± 8○ respectively, with an inner dust sublimation radius of ~0.04 au. The inner disc is misaligned by 39○ ± 4○ with respect to the outer disc, with the far side of the inner disc to the east and the far side of the outer disc to the west. We constrain h/R (scattering surface/radius of scattered light) of the outer disc at 18 au to be about 13 % by calculating the offset between the shadow position and the central star. No companion was detected, with a magnitude contrast of 4.4 in the H-band and placing an upper mass limit of 0.17M⊙ at separations of 0 − 8 au. Therefore, we cannot confirm or rule out that a low-mass star or giant planet is responsible for the misalignment and dust sub-structures. 
    more » « less
  5. ABSTRACT Planets are thought to form at the early stage of stellar evolution when mass accretion is still ongoing. RY Tau is a T Tauri type star at the age of a few Myr, with an accretion disc seen at high inclination, so that the line of sight crosses both the wind and accretion gas flows. In a long series of spectroscopic monitoring of the star over the period 2013–2020, we detected variations in H$$\, {\alpha }$$ and Na i D absorptions at radial velocities of infall (accretion) and outflow (wind) with a period of about 22 d. The absorptions in the infalling and outflowing gas streams vary in antiphase: an increase of infall is accompanied by a decrease of outflow, and vice versa. These ‘flip-flop’ oscillations retain phase over several years of observations. We suggest that this may result from the magnetohydrodynamics processes at the disc–magnetosphere boundary in the propeller mode. Another possibility is that a massive planet is modulating some processes in the disc and is providing the observed effects. The period, if Keplerian, corresponds to a distance of 0.2 au, which is close to the dust sublimation radius in this star. The presence of the putative planet can be confirmed by radial velocity measurements: the expected amplitude is ≥90 m s−1 if the planet mass is ≥2 MJ. 
    more » « less